
Tutorial 4
Review for “class” concepts

and
“TokenScanner” Applications

Sep. 19, 2022
Lai Wei (USTF)

(SDS, 120090485@link.cuhk.edu.cn)

mailto:120090485@link.cuhk.edu.cn

Objectives today
1. Terminal knowledges
2. Class & objects basics
3. Class constructors
4. Class attributes & functions
5. Class member scopes
6. Class overload operators
7. One example with class applications: Token Scanner
8. How to learn this course well (continued)
9. Q & A time

1. Terminal knowledges

• Actually, our terminal has a concept of “current working directory”
（当前目录）

• The terminal can only see files (programs) under current working
directory, and the environment variable “Path”

• A relative path （相对路径） refers to a location that is relative to a
current directory.

• An absolute path （绝对路径）always contains the root element
and the complete directory list required to locate the file.

1. Terminal knowledges

• Actually, our terminal has a concept of “current working directory”
（当前目录）

• How to get this “current working directory” ? (windows, mac same)
We use PowerShell in windows here!

1. Terminal knowledges

• A relative path （相对路径） refers to a location that is relative to
the current directory.

“ls”: list all files
in current
working
directory

• So basing that we’re in
“D:\Programming\cpp\CSC3002_USTF_2022Fall\Tutorial4_LaiWei_22
Fall\code” directory,

• These files have relative path to “1.cpp” “1.py” “2.cpp”……

1. Terminal knowledges

• An absolute path （绝对路径）always contains the root element
and the complete directory list required to locate the file.

• “D:\Programming\cpp\CSC3002_USTF_2022Fall\Tutorial4_LaiWei_22
Fall\code\1.cpp”

• “D:\Programming\cpp\CSC3002_USTF_2022Fall\Tutorial4_LaiWei_22
Fall\code\1.py”

• ……

1. Terminal knowledges
• The terminal can only see files (programs) under current working

directory, and the environment variable “Path”

“g++” is in the
environment variable

path, so we can call it by
relative path

“2.cpp” is in the
current working

directory, so we can
call it by relative

path

“hello.exe” is a
relative path,

create executable
under current

working dir
Absolute path form:

1. Terminal knowledges
• Changing directories: by “cd <dir>” command

• “..” means upper level directory
• <dir> can be a relative path or an absolute path

1. Terminal knowledges
• Recall this in tutorial 2: When you open the terminal in VS Code, it

automatically change the current working directory at your opened
folder.

• So I forced you to do like this, so we won’t have problem in “relative
path”. If you are in wrong working directory, you can’t compile the
code “g++ helloworld.cpp” because it can’t find the “helloworld.cpp”.

2. Class & objects basics

3. Class constructors

• C++ class can have multiple constructors, with different parameter list.

3. Class constructors

• E.g., the std::string class.

3. Class constructors

• Instantize an instance.

4. Class attributes & functions
• Attributes are basically variables that belongs to the class.
• No need to use grammar such as “self.” in the class.

1

4. Class attributes & functions
• If member function parameter has the same name as the class

attribute, use “this->x” to distinguish them.
• Why not “this.x”? Because “this” is a pointer pointing to this instance.

4. Class attributes & functions
• You can declare the function inside the class definition (.h file), and

implement it outside of the class (.cpp file)
• or you can implement it in class definition as well. (not recommend)

5. Class member scopes
• In C++, there are three access specifiers:
• public - members are accessible from outside the class
• private - members cannot be accessed (or viewed) from outside the

class. By default, attributes are private!
• protected - members cannot be accessed from outside the class,

however, they can be accessed in inherited classes. You will learn
more about Inheritance later.

5. Class member scopes

6. Class overload operators

• Customizes the C++ operators for operands of user-defined types.
• What operator can be overloaded?

• How to do that?
• as a member function
• as a non-member function (free function)
• As a “friend” function

6. Class overload operators

as a member
function

as a non-member
function (free
function)

As a “friend” function

Definition where? In class definition Out class, or together
with implementation

In class definition

Implementation
where?

In class, with definition
/ Out class, both OK

Out of class definition Out of class definition

prototype Unary operator: 0
parameter.
Binary operator: 1
parameter.

Unary operator: 1
parameter.
Binary operator: 2
parameter.

Same as free function
prototype

6. Class overload operators
Expression As member function As non-member function Example

@a (a).operator@ () operator@ (a) !std::cin calls std::cin.operator!()

a@b (a).operator@ (b) operator@ (a, b) std::cout << 42 calls std::cout.opera
tor<<(42)

a=b (a).operator= (b) cannot be non-member Given std::string s;, s = "abc"; calls s
.operator=("abc")

a(b...) (a).operator()(b...) cannot be non-member Given std::random_device r;, auto
n = r(); calls r.operator()()

a[b] (a).operator[](b) cannot be non-member Given std::map<int, int> m;, m[1] =
2; calls m.operator[](1)

a-> (a).operator-> () cannot be non-member Given std::unique_ptr<S> p;, p-
>bar() calls p.operator->()

a@ (a).operator@ (0) operator@ (a, 0) Given std::vector<int>::iterator i;, i+
+ calls i.operator++(0)

in this table, @ is a placeholder representing all matching operators: all prefix operators in @a, all postfix operators other than -> in a@, all infix
operators other than = in a@b

• https://en.cppreference.com/w/cpp/language/operators

unary, prefix

binary

*assignment

*call

*indexing (at)

*get pointer’s attribute

unary, postfix

http://en.cppreference.com/w/cpp/io/cin
http://en.cppreference.com/w/cpp/io/cin
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/string/basic_string
http://en.cppreference.com/w/cpp/numeric/random/random_device
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/language/operators

Member
function, defined
and implement

in the class

Member
function, defined

in class and
implement out

Free function to
overload

operator<<

DEMO in BoolNumber.cpp

• Boolean Algebra: only 0 and 1.

• Many applications need to divide a string into words, or more generally, into
tokens (i.e. logical units that may be larger than a single character).

• Given that the problem of dividing a string into individual tokens comes up so
frequently in applications, it is useful to build a library package that takes care
of that task. The primary goal is to build a package that is simple to use but also
flexible enough to meet the needs of a variety of clients.

Motivation 7. Token Scanner: From previous years’ slides

Task 1: Associate the token scanner with a source of tokens, which
might be a string, an input stream, etc.
Task 2: Retrieve individual tokens from the source of tokens and

deliver them one at a time.
Task 3: Test whether the token scanner has any tokens left to process.

Design

pseudocode - reading tokens from a scanner:

 TokenScanner should define tokens. What should be considered as a token?
 a word in a string?
 a single character?
 a punctuation mark?
 a space?

 Different applications define tokens in different ways
 TokenScanner class must give the client some control over what types of tokens are

recognized, e.g. whether a space should be recognized as a token.

Design

scanner.setInput(str) or scanner.setInput(infile)
Sets the input for this scanner to the specified string or input stream.

scanner.hasMoreTokens()
Returns true if more tokens exist, and false at the end of the token stream.

scanner.nextToken()
Returns the next token from the token stream, and "" at the end.

scanner.saveToken(token)
Saves token so that it will be read again on the next call to nextToken.

scanner.ignoreWhitespace()
Tells the scanner to ignore whitespace characters.

scanner.scanNumbers()
Tells the scanner to treat numbers as single tokens.

scanner.scanStrings()
Tells the scanner to treat quoted strings as single tokens.

Design

Methods in the TokenScanner Class

Ignoring white space:

Demo

Not ignoring white space:

Demo

Scan single digits: Scan the numbers as a whole:

In tokenscanner.h: In tokenscanner.cpp:

Implementation: constructor

In tokenscanner.h:

Implementation: private attributes

In tokenscanner.h: In tokenscanner.cpp:

Implementation: setInput()

In tokenscanner.h: In tokenscanner.cpp:

Implementation: options::skipWhitespace

In tokenscanner.h: In tokenscanner.cpp:

Implementation: hasMoreTokens()

In tokenscanner.h: In tokenscanner.cpp:

Implementation: nextToken()

8. How to learn this course well (continued)
• Finish the “Review Questions” for each chapter in textbook
• https://github.com/HouWhalee1222/CSC3002_Review_Question_Ans

wer

Download
pdf here

Register
and star

this repo!

https://github.com/HouWhalee1222/CSC3002_Review_Question_Answer
https://github.com/HouWhalee1222/CSC3002_Review_Question_Answer

8. How to learn this course well (continued)
• Supplementary materials for this tutorial
• Class basic concepts
• https://www.learncpp.com/cpp-tutorial/welcome-to-object-oriented-

programming/
• Operator overloading
• https://www.learncpp.com/cpp-tutorial/introduction-to-operator-

overloading/

https://www.learncpp.com/cpp-tutorial/welcome-to-object-oriented-programming/
https://www.learncpp.com/cpp-tutorial/welcome-to-object-oriented-programming/
https://www.learncpp.com/cpp-tutorial/introduction-to-operator-overloading/
https://www.learncpp.com/cpp-tutorial/introduction-to-operator-overloading/

9. Q & A time

• Thank you for your listening!

• Lai Wei (USTF)
• (SDS, 120090485@link.cuhk.edu.cn)
• Additional office hour appointment is temporality not available. Ask

others instead.
• WeChat Q&A is deprecated in the future.
• Don’t ask me about homework problems anymore. Ask TAs instead.
• Office hour: Friday 10:00-11:00 am, Start-up Zone library L103

	Tutorial 4 �Review for “class” concepts�and �“TokenScanner” Applications
	Objectives today
	1. Terminal knowledges
	1. Terminal knowledges
	1. Terminal knowledges
	幻灯片编号 6
	1. Terminal knowledges
	1. Terminal knowledges
	1. Terminal knowledges
	1. Terminal knowledges
	2. Class & objects basics
	3. Class constructors
	3. Class constructors
	3. Class constructors
	4. Class attributes & functions
	4. Class attributes & functions
	4. Class attributes & functions
	5. Class member scopes
	5. Class member scopes
	6. Class overload operators
	6. Class overload operators
	6. Class overload operators
	幻灯片编号 23
	DEMO in BoolNumber.cpp
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	Methods in the TokenScanner Class
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	8. How to learn this course well (continued)
	8. How to learn this course well (continued)
	9. Q & A time

