Tutorial 2
Get familiar with VS Code & Makefile
and
String Applications

Sep. 19, 2022
Lai Wei (USTF)
(SDS, 120090485@link.cuhk.edu.cn)

mailto:120090485@link.cuhk.edu.cn

Objectives today

1. Some background information about this course.
2. Two concepts clarification

Get familiar with some common operations of string (e.g., substr),
which will be important in your Assignment 1!

4. Three examples with string operations:
1. Palindromes [B] X 2%
2. Acronym B FZE}4aH%15
3. Piglatin JLE&ERA1E
5. Learn to use VS Code and Makefile to run the examples above.

6. Q&A time: make sure you can run the C++ code on your computer
now! (If you can’t, solve it today!)

1. Background
* The course changed a lot in this semester. Now, you can:

e Use Qt Creator to write code. (Recommended)
 Most examples in our textbook has implementations with the Stanford Library.

 |tis difficult to embed the Library into other IDEs and there is a blank or
empty project provided with the Library already installed.

e So if you want to use Stanford Library, you probably need to use Qt.

e Use VS Code to write code. (Highly Recommended)
e Familiar, Light-weight, easy to use.
e Learn to use command lines and Makefile.
e Allow writing and running single .cpp file without create a heavy “project”.

e Our assignments are individual problems (individual files), VS Code is enough
to use.

e Use other IDEs like Visual Studio or CLion. (Optional)

1. Background

e A fact:

 Our commonly used “Python” is mainly implemented in C
language. (https://github.com/python/cpython)

e C/C++ language is more complicated than Python. Python
hides all complicated grammar and details in C/C++,
providing you an easy-to-use programming language.

e Why more complicated? Designed for high performance.

e But in this course, we are learning C++. It is common for you
to feel more difficult than CSC1001 (Python). But don’t
worry!

https://github.com/python/cpython

2. Concepts

e What is g++7?

e g++ is the traditional nickname of GNU C++, a freely redistributable C++
compiler produced by the Free Software Foundation plus dozens of skilled
volunteers

* (source: http://tinf2.vub.ac.be/~dvermeir/manual/g++/g++faq_1.html)

e What is Makefile?

 Makefile (Script) is a way of automating software building procedure with
dependencies.

 The make (program) automatically determines which pieces of a large
program need to be recompiled, and issues commands to recompile them.

e NOTE: make (program) is only a helper building tool, not the compiler. The
core compiler is still g++.
* (source: https://www3.nd.edu/~zxu2/acms60212-40212/Makefile.pdf)

3. Get familiar with some common operations
of string

Last one be "\O’
* Two types of String: / tosr:faelﬁ it }
e C-style string (char array)

« char c[6] = {"h", "e", "I", "I", "0o", "\0°};
« char c[6] “hello”;

e C++ Std::String & length (6-1) }
e include<string> maximum!!!

e std::string s = "hello';

e Changing C-style string to std::string
e std::string s(c);
e std::string s = std::string(c);
e Changing std::sting to C-style string
e s.c_str();

3. The <cctype> (ctype.h) Interface

This header declares a set of functions to classify and transform individual characters.

bool i1sdigit(char ch)

Determines if the specified character is a digit.

bool 1salpha(char ch)

Determines if the specified character is a letter.

bool 1salnum(char ch)
Determines if the specified character is a letter or a digit.

bool 1slower(char ch)
Determines if the specified character is a lowercase letter.

bool i1supper(char ch)
Determines if the specified character is an uppercase letter.

bool i1sspace(char ch)
Determines if the specified character is whitespace (spaces and tabs).

char tolower(char ch)
Converts ch to its lowercase equivalent, if any. If not, ch is returned

char toupper(char ch)
Converts ch to its uppercase equivalent, if any. If not, ch is returned unchanged.

For more, please visit https://cplusplus.com/reference/cctype/

https://cplusplus.com/reference/cctype/

3. The <cstring> (string.h) Interface

This header file defines several functions to manipulate C strings and arrays.

void* memcpy(void* dst, const void* src, size t num)
Copy block of memory

char* strcat(char* dst, const char* src)
Concatenate strings

void* memchr (void* ptr, int value, size t num)
Locate character in block of memory

For more, please visit https://cplusplus.com/reference/cstring/

https://cplusplus.com/reference/cstring/

3. Operators on the string Class

e To convert the C++ string objects into C string literals, simply apply the
C_str method to the C++ string.

e Unlike most languages, C++ allows classes to redefine the meanings of the
standard operators. As a result, several string operations, such as + for
concatenation, are implemented as operators (overloading).

str[i]
Returns the it character of str. Assigning to str[i] changes that character.

sl + s2
Returns a new string consisting of s1 concatenated with s2.
sl = s2;
Copies the character string s2 into s1.
sl += s2;
Appends s2 to the end of s1.
sl == s2 (andsimilarly for<, <=, >, >=,and 1=)
Compares to strings lexicographically.

str.c_str()
Returns a C-style character array containing the same characters as STr.

3. Operators on the string Class

str.length()

Returns the number of characters in the string str.

str.at(index)
Returns the character at position index; most clients use str[index] instead.

str.substr(pos, len)
Returns the substring of str starting at pos and continuing for Ien characters.

str.find(ch, pos)

Returns the first index > pos containing ch, or string: :npos if not found.

str.find(text, pos)
Similar to the previous method, but with a string instead of a character.

4.1. Palindrome

e A palindrome is a word that reads identically backward and
forward, such as “level” or “noon”.

e Write a C++ program isPalindrome that checks whether a
string is a palindrome.

bool 1sPalindrome(string str) {
int n = str.length();
for (int 1 = 0; 1 <n/ 2; 1++) {
iIT (str[i1] '= str[n - 1 - 1]) return false;

by
return true;
by
bool 1sPalindrome(string str) {
return str == reverse(str); e
} | function to reverse a

e Efficiency vs. Readability k

we define this

string.

4.2. Acronym

e An acronym is a word formed by taking the first letter of each
word in a sequence, as in

"self-contained underwater breathing apparatus'™ — "'scuba'

e Write a C++ program that generates acronymes, as illustrated
by the following sample run:

(OO 6 Acronym
Program to generate acronyms
Enter string: not in my back yard

The acronym is "nimb¥"
Enter string: Federal Emergency

The acronym i1s "FEMA"
Enter string: Management Agency

4.2. Acronym

string acronym(string str) {
string result = """;
bool 1nWord = false;
int nc = str.length();
for (int 1 = 0; 1 < nc; i++) {
char ch = str[i];
it _(inWord) {

It (lisalpha(ch)) 1nWord = false;

} else {
1T (isalpha(ch)) {
result += ch;
inWord = true;

}

}
}

return result;

4.3. Translating English to Pig Latin

We describe a C++ program that reads a line of text from the
user and then translates each word in that line from English to
Pig Latin, a made-up language familiar to most children in the
English-speaking world.

In Pig Latin, words are formed from their English counterparts
by applying the following rules:

1. If the word contains no vowels (JT35), no translation is done,
which means that the translated word is the same as the
original.

2. If the word begins with a vowel, the function adds the string
"way" to the end of the original word.

3. If the word begins with a consonant (853), the function
extracts the string of consonants up to the first vowel, moves
that collection of consonants to the end of the word, and adds

the string "ay".

4.3. Translating English to Pig Latin

As an example, suppose that the English word is scram. Because
the word begins with a consonant, you divide it into two parts:
one consisting of the letters before the first vowel and one
consisting of that vowel and the remaining letters:

SCIX am

You then interchange these two parts and add ay at the end, as
follows:

am| |[scr| |ay

Thus the Pig Latin word for scram is amscray. For a word that
begins with a vowel, such as apple, you simply add way to the
end, which leaves you with appleway.

4.3. Translating English to Pig Latin

A sample run of the program might look like this:
SO6 PigLatin

This program translates English to Pig Latin.
Enter English text: this is pig latin.
Pig Latin output: isthay isway igpay atinlay.

&

ilﬁ

It is worth taking a careful look at the implementations of
lineToPigLatin and wordToPigLatin. The lineToPigLatin function
finds the word boundaries in the input and provides a useful
pattern for separating a string into individual words. The
wordToPigLatin function uses substr to extract pieces of the
English word and then uses concatenation to put them back
together in their Pig Latin form. In Chapter 6, you will learn
about a more general facility called a token scanner that divides
a string into its logically connected parts.

5.1. Run the code via command lines (terminal)

* If you don’t know how, or fail to set the VS Code makefile extension
(settings.json), you can ALWAYS use COMMAND LINES to compile
and run your C++ code.

* Only pre-requisite: you can run “make --version” and “g++ --version”

in the command lines.

PS C:\Users\30785> make

GNU Make 3.81

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This program built for i386-pc—-mingw32

PS C:\Users\30785> g++

g++.exe (x86_6U-posix—seh-revd, Built by MinGW-W6L project) 7.3.0

Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

5.1. Run the code via command lines
a) Compile by pure command lines, with “g++”

compile command

 Open a terminal in the current code folder.

v PROGRAM... [B3 U &
Correct: Makefile is acronym.cpp

b i g in current program 2 L

C acronymh . folder workspace, WELG S

no path problem.

v TuToriAL2.. [} B U @
Wrong : Makefile in ~ Program1_Acronym
NOT in program acronym.cpp
< "Program to generate acronyms" << endl;
s (erue) folder workspace, acronym.h
‘ r omsco may bring relative- Makefile
*.J‘lndicu.F’OJrr‘bhell P path problem. v Program2_Palindrome

i (C) Microsoft Corporation. {# 8 At BL# N
Makefile

=TS & PowerShell https://aka.ms/pscore6

palidrome.h

S D:\Programming\cpp\CSC3002 USTF 2022Fall\Tutorial2 LaiWei 22Fall\Prog
raml_Acronym> | |

palindrome.cpp

5.1. Run the code via command lines
a) Compile by pure command lines, with “g++’

compile command
* In the terminal, type compile command:

/]

e “g++ -std=c++17 <your source .cpp files> -o <output filename>”
e E.g. “g++ -std=c++17 helloworld.cpp foo.cpp -0 helloworld”

* Then run the executable program:
 different terminal have different calling method, maybe:

/A {

o “/<filename>”, “<filename>" (macOS system)

n

o “/<filename>.exe”, “<filename>.exe” (Windows system)

5.1. Run the code via command lines
a) Compile by pure command lines, with “g++”
compile command

ZIAFHIEEF S PowerShell https://aka.ms/pscore6

PS D:\Programming\cpp\CSC3002 USTF_2022Fall\Tutorial2 LaiWei_ 22Fall\Programl_Acronym> g++ -std=c++17 acronym.
cCpp -O acronym.exe

PS D:\Programming\cpp\CSC3002 USTF_2022Fall\Tutorial2 LaiWei_ 22Fall\Programl_Acronym> ./acronym.exe

Program to generate acronyms

Enter string: I

e Use <ctrl>(command) + C to exit the program.

5.1. Run the code via command lines
b) Compile by pure command lines, with “makefile”.

e Write your own “Makefile” script, or use the template given. (If
you use Prof Kinley’s template, remember to change two names!

PROGRAM = \

* In the terminal, type make command: helloworld

* “make” (or “mingw32-make.exe”, if you use Qt’s make too!) IEEEESEES

helloworld.o \

foo.o \

* Then run the executable program:
 different terminal have different calling method, maybe:

/A {

o “/<filename>”, “<filename>" (macOS system)

n

o “[<filename>.exe”, “<filename>.exe” (Windows system)

5.1. Run the code via command lines
b) Compile by pure command lines, with “makefile”.

ZiAFTHIEE 5 PowerShell https://aka.ms/pscore6

PS D:\Programming\cpp\CSC3002 USTF_ 20622Fall\Tutorial2 LaiWei 22Fall\Programl_Acronym> make

g++ -c -std=c++17 acronym.cpp -o acronym.o

g++ -std=c++17 acronym.o -o acronym

PS D:\Programming\cpp\CSC3002 USTF 2022Fall\Tutorial2 LaiWei 22Fall\Programl Acronym> ./acronym.exe
Program to generate acronyms

Enter string:

e Use <ctrl>(command) + C to exit the program.

5.1. Run the code via command lines
b) Compile by pure command lines, with “makefile”.

e One useful tip: Use “1” “d.”(Up/down arrows on the keyboard) to
view command history.

 Two useful tips: Use “Tab” for Automatic completion the
command / filename

e (Demo)

5.2. Run the code via VS Code make-extension

e A fact behind the make-extension: it automatically
generates commands in terminal for you after you pressing
the “build” “run” button. In the first time you press the
button, it automatically generates configurations for you (in
“vscode/settings.json”).

e If it succussed, you can use the button to compile and run
your program.

e But if it failed, you need to manually set the proper path
settings (in “.vscode/settings.json”).

e But, you can ALWAYS use COMMAND LINES to compile and
run your C++ code.

5.2. Run the code via VS Code make-extension

* You can first directly use the buttons to compile and run your
program without setting path in “settings.json”. The Extension will
automatically detect and generate the settings for you. If you find
the setting path is not correct, view next-next slide for solution.

¢ BUIId: MAKEFR. (& T D - m -

helloworld.o \
foo.o \

GS = -std=c++17
correspond to this § = e+

@

Makefile tools v = 6

NANL9 & auv i d e / st BT Sk =Ll 4 <A 0, S N e S L AT i / e e PN =P AL | /
(([a-zA-Z@-9-_.]1*-)*g\+\+(-[a-zA-Z@-9-_.]1*)*)|(([a-2zA-Z0-9-_.]*-)*c\+\+(-[a-zA-Z@-9-_.1*)
)| (([a-zA-Z0-9- _.]-)*C:\Qt\Qt5.12.10\Tools\mingw730_64\bin\g++.exe(-[a-zA-Z0-9-_.]*)*))

(\s|\"\s)(.*)$/: Nothing to repeat
Configure elapsed time: ©6.106
The build targets list may not be accurate because configure failed.

5.2. Run the code via VS Code make-extension

e Run:

3

D:\Programming\cpp\CSC3002_USTF_2022Fall\helloworld\> helloworld.exe()

correspond to this

. PO T B .3 - B LW 1)
iUddI"dlj VATIELIUWUT LU,

"D:\\Programming\\cpp\\CSC3002 USTF 2022Fall\\helloworld\\helloworld.exe
[

Makefile tools W &

PROBLEMS OuTPUT
154 J Al T LT L YT e | 4 o))

WANLY & v 2 e J Tl ¥ LY & &av 27 e | ’ JIAANLS & &

(([a-zA-Z0-9-_.]*-)*cl(-[a-2zA-Z@-9-_.]1*)*)|(([a-2A-Z0-9-_.]1*-)*g\+\+(-[a-zA-ZB-9-_.]*)*)|
(([a-zA-Z0-9- .]*-)*c\+\+(-[a-zA-Z0-9- .]*)*)|(([a-zA-Z@-9- .]*-)*C:\Qt\Qt5.12.
10\Tools\mingw730_64\bin\g++.exe(-[a-zA-Z0-9- .]1*)*))(\s|\"\s)(-*)$/: Nothing to repeat

Configure elapsed time: ©.089
The launch targets list may not be accurate because configure failed.

5.2. Run the code via VS Code make-extension

* If you find the auto-generated setting path is not correct, you can
manually set the path in the “settings.json”:

Selection V Go Run Terminal Help » settingsjson - helloworld - Visual Studio Code

@ EXPLORER G | p M {} settings.json ®
1

\» HELLOWORLD vscode » {} settingsjson > [] makefile.launchConfigurations
> _MACOSX {
v wscode "malafile launchConficiirations" [
{} settingsjson T B Cie

{} tasksjson

6 ron i : "D:\\Programming\\cpp\\C5C3882 USTF 2622Fall\\helloworld\\",
C foo.h “binari/Path”: "D:\\Programming\\cpp\\CSC3802 USTF 2822Fall\\helloworld)\helloworld.exe",
= foga "binarfArgs": [—l

€ helloworld.cpp

= helloworld.exe

C helloworld.h

= helloworld.o]

M Makefile “"C_Cpp.defaultfconfigurationProvider": "ms-vscode.makefile-tools",
10Uk s":/"Disabled",
New File... r

New Folddis

Reveal in File Explorer

Open in Integrated Terminal

Add Folder to Workspace...
Open Folder Settings

Remove Folder from Workspace

Find in Folder... Shift+Alt+F

Copy Path Shift+Alt+C

Copy Relative Path Ctrl+K Ctrl+5Shift+C

6. Q & A time

* Thank you for your listening!

* Lai Wei (USTF)
e (SDS, 120090485 @link.cuhk.edu.cn)
e Office hour: Friday 10:00-11:00 am, Start-up Zone library L103

mailto:120090485@link.cuhk.edu.cn

	Tutorial 2 �Get familiar with VS Code & Makefile �and �String Applications
	Course unofficial WeChat group &�Current Zoom ID
	Objectives today
	1. Background
	1. Background
	2. Concepts
	3. Get familiar with some common operations of string
	3. The <cctype> (ctype.h) Interface�This header declares a set of functions to classify and transform individual characters.
	3. The <cstring> (string.h) Interface�This header file defines several functions to manipulate C strings and arrays.
	3. Operators on the string Class
	3. Operators on the string Class
	4.1. Palindrome
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	5.1. Run the code via command lines (terminal)
	5.1. Run the code via command lines�a) Compile by pure command lines, with “g++” compile command
	5.1. Run the code via command lines�a) Compile by pure command lines, with “g++” compile command
	5.1. Run the code via command lines�a) Compile by pure command lines, with “g++” compile command
	5.1. Run the code via command lines�b) Compile by pure command lines, with “makefile”.
	5.1. Run the code via command lines�b) Compile by pure command lines, with “makefile”.
	5.1. Run the code via command lines�b) Compile by pure command lines, with “makefile”.
	5.2. Run the code via VS Code make-extension
	5.2. Run the code via VS Code make-extension
	5.2. Run the code via VS Code make-extension
	5.2. Run the code via VS Code make-extension
	6. Q & A time

