
CSC3100 Data Structures
Tutorial 4

Lai Wei (USTF, SDS, 120090485)
laiwei1@link.cuhk.edu.cn

https://github.com/I-am-Future
https://i-am-future.github.io/

mailto:laiwei1@link.cuhk.edu.cn
https://github.com/I-am-Future
https://i-am-future.github.io/

Contents
• Linked Lists (Prof. Fang’s lec 7, Prof. Yu’s lec 6)

• 2 x Coding Questions

• Q & A

1. Linked Lists (1)

• A list represents a countable number of ordered values,
where the same value may occur more than once.

• Advantages：
• Do not use contiguous memory to complete dynamic operations.
• Insert and delete operations for easy insertion and removal

internally
• Push and pop can be performed at both ends

https://en.wikipedia.org/wiki/Order_theory
https://en.wikipedia.org/wiki/Value_(computer_science)

1. Linked Lists (2)
• A linked list is a linear collection of data elements whose

order is not given by their physical placement in memory.
Instead, each element points to the next.

1. Linked Lists (3)
• It is a data structure consisting of a collection of nodes which

together represent a sequence. In its most basic form, each
node contains: data, and a reference (in other words, a link)
to the next node in the sequence.

class Node {
public:
 int data;
 Node* next;

};

class Node:
 def __init__(self, data):
 self.data = data
 self.next = None

class Node {
 int data;
 Node next;

}

typedef struct PSNode{
 /* Process info field */
 char name[64]; // process name
 pid_t pid; // this pid
 pid_t ppid; // parent pid
 ProcType type; // process type

 /* Data structure field (as a list or tree) */
 struct PSNode* list_next; // As linked list, next node pointer
 struct PSNode* thischild_head; // As tree, this children's list head
 int thischild_size; // As tree, len of this children's list
 struct PSNode* parentchild_next;// As tree, parent children's list next

 /* Helper var field */
 int compactNum;
 bool compactSubtree; // true if a subtree is compacted
} PSNode;

Example of a “Node” for practical use

1. Linked Lists (3)
• This structure allows for efficient insertion or removal of

elements from any position in the sequence during iteration.

1. Linked Lists (4)
• Basic operations:

• insertFirst()
• insertLast()
• deleteFirst()
• deleteLast()
• iterate()

public void iterate() {
 Node current = head;
 while (current != null) {
 // do with current ...
 current = current.next;
 }

}

Just think
carefully with
procedures!

1. Linked Lists (5)
• Different implementations.
• Some Linked Lists only remember the “head”, while

other implementation of Linked Lists remember both
“head” and “tail”. Therefore, complexities are
different n two cases.

• insertFirst() O(1) O(1)
• insertLast() O(n) O(1)
• deleteFirst() O(1) O(1)
• deleteLast() O(n) O(n)

“head” “head” and “tail”

2. Exercise 1

• You are given the heads of two sorted linked lists list1 and list2.
• Merge the two lists into one sorted list. The list should be made by

splicing together the nodes of the first two lists.
• Return the head of the merged linked list.

Chinese version:
https://leetcode.cn/problems/merge-two-sorted-lists/
English version:
https://leetcode.com/problems/merge-two-sorted-lists/

https://leetcode.cn/problems/merge-two-sorted-lists/
https://leetcode.com/problems/merge-two-sorted-lists/

2. Exercise 1

• This is a simple example for linked lists.
• Iteration: Compare the first node of these two linked lists. If

the value is smaller, move to the second node and repeat
comparing. Use this node with smaller value to construct a
new list.

• Recursion: Compare the first node of these two linked list.
After comparison, choose the node with smaller value to
form the output list and link it to the new output of the
function.

Chinese version:
https://leetcode.cn/problems/merge-two-sorted-lists/
English version:
https://leetcode.com/problems/merge-two-sorted-lists/

https://leetcode.cn/problems/merge-two-sorted-lists/
https://leetcode.com/problems/merge-two-sorted-lists/

2. Exercise 1
Chinese version:
https://leetcode.cn/problems/merge-two-sorted-lists/
English version:
https://leetcode.com/problems/merge-two-sorted-lists/

https://leetcode.cn/problems/merge-two-sorted-lists/
https://leetcode.com/problems/merge-two-sorted-lists/

2. Exercise 1
Chinese version:
https://leetcode.cn/problems/merge-two-sorted-lists/
English version:
https://leetcode.com/problems/merge-two-sorted-lists/

https://leetcode.cn/problems/merge-two-sorted-lists/
https://leetcode.com/problems/merge-two-sorted-lists/

2. Exercise 2

• Given head, the head of a linked list, determine if the linked list has a
cycle in it.

Chinese version:
https://leetcode.cn/problems/linked-list-cycle/
English version:
https://leetcode.com/problems/linked-list-cycle/

https://leetcode.cn/problems/linked-list-cycle/
https://leetcode.com/problems/linked-list-cycle-ii/

2. Exercise 2
Chinese version:
https://leetcode.cn/problems/linked-list-cycle/
English version:
https://leetcode.com/problems/linked-list-cycle/

• Fast pointer go 2 steps every time;
• Slow pointer go 1 step every time.
• If there is no cycle: Fast point reaches the end (NULL)
• If there is a cycle: they will meet eventually!

Visualization:
【算法动画图解：leetcode.141.环形链表（有环）】
https://www.bilibili.com/video/BV12M4y1d7QP/?share_source=copy_
web&vd_source=0c067fd928325f3684e2a932b9539e44

https://leetcode.cn/problems/linked-list-cycle/
https://leetcode.com/problems/linked-list-cycle-ii/
https://www.bilibili.com/video/BV12M4y1d7QP/?share_source=copy_web&vd_source=0c067fd928325f3684e2a932b9539e44
https://www.bilibili.com/video/BV12M4y1d7QP/?share_source=copy_web&vd_source=0c067fd928325f3684e2a932b9539e44

2. Exercise 2
Chinese version:
https://leetcode.cn/problems/linked-list-cycle/
English version:
https://leetcode.com/problems/linked-list-cycle/

bool hasCycle(ListNode *head) {
 ListNode *slow = head;
 ListNode *fast = head;
 while(fast != nullptr) {
 fast = fast->next;
 if(fast != nullptr) {
 fast = fast->next;
 }
 if(fast == slow) {
 return true;
 }
 slow = slow->next;
 }
 return false;
}

https://leetcode.cn/problems/linked-list-cycle/
https://leetcode.com/problems/linked-list-cycle-ii/

2. Exercise - bonus

• Given head, the head of a linked list, determine if the linked list has
a cycle in it.

• Given the head of a linked list, return the node where the cycle
begins. If there is no cycle, return null.

Chinese version:
https://leetcode.cn/problems/linked-list-cycle-ii/
English version:
https://leetcode.com/problems/linked-list-cycle-ii/

https://leetcode.cn/problems/linked-list-cycle-ii/
https://leetcode.com/problems/linked-list-cycle-ii/

3. Q & A

	CSC3100 Data Structures�Tutorial 4
	Contents
	1. Linked Lists (1)
	1. Linked Lists (2)
	1. Linked Lists (3)
	Example of a “Node” for practical use
	1. Linked Lists (3)
	1. Linked Lists (4)
	1. Linked Lists (5)
	2. Exercise 1
	2. Exercise 1
	2. Exercise 1
	2. Exercise 1
	2. Exercise 2
	2. Exercise 2
	2. Exercise 2
	2. Exercise - bonus
	3. Q & A

