
CSC3100 Data Structures
Tutorial 3

Lai Wei (USTF, SDS, 120090485)
laiwei1@link.cuhk.edu.cn

https://github.com/I-am-Future
https://i-am-future.github.io/

mailto:laiwei1@link.cuhk.edu.cn
https://github.com/I-am-Future
https://i-am-future.github.io/

Contents
• Asymptotic Analysis (Prof. Fang’s lec 5, Prof. Yu’s lec 4)

• Concepts
• Practice Problems

• Complexity for recursion and divide-and-conquer (Prof. Fang’s lec
6, Prof. Yu’s lec 5)

• Concepts
• Practice Problems

• Coding Questions

• Q & A

1. Asymptotic Analysis-Concepts

• Evaluate the “efficiency” of an algorithm.

• Commonly used notations:
• Big-Oh notation: measure the upper bound complexity.
• Big-Omega notation: measure the lower bound complexity.
• Big-Theta notation: just there! Upper & lower bounds meet!

Upper & lower bound? (1)

• For some algorithm f(n), assume we can prove the greens:
• O(1) O(log n) O(n) O(n·log n) O(n2) O(n3) O(2n)
 ^^^^^^^^
 (minimum upper bound)
• Ω(1) Ω(log n) Ω(n) Ω(n·log n) Ω(n2) Ω(n3) Ω(2n)
 ^^^^^^^^
 (maximum lower bound)
• The minimum upper bound and maximum lower bound meet
• => f(n) is Θ(n·log n)

Upper & lower bound? (2)

• For some algorithm f(n), assume we can prove the greens:
• O(1) O(log n) O(n) O(n·log n) O(n2) O(n3) O(2n)
 ^^^^^
 (minimum upper bound)
• Ω(1) Ω(log n) Ω(n) Ω(n·log n) Ω(n2) Ω(n3) Ω(2n)
 ^^^^^^^^
 (maximum lower bound)
• The minimum upper bound and maximum lower bound don’t meet
• => we cannot conclude f(n) is Θ(n·log n). Usually, we only say f(n) is O(n2)

Upper & lower bound? (3)

• For some algorithm f(n), assume we can prove the greens:
• O(1) O(log n) O(n) O(n·log n) O(n2) O(n3) O(2n)
 ^^^^
 (minimum upper bound)
• Ω(1) Ω(log n) Ω(n) Ω(n·log n) Ω(n2) Ω(n3) Ω(2n)
 ^^^^^^^^
 (maximum lower bound)
• Upper bound is smaller than lower bound: such case NEVER happen!!!

Rules: help you calculate complex one

For Big-Oh and Big-Omega, all of them are valid:

1. Polynomial Rule: Only the biggest matter
2. Product Rule: the big multiplies the big
3. Sum Rule: the bigger of the two big
4. (Log Rule): Log only beats constant
5. (Exponential Rule): Exponential beats power functions

1. Asymptotic Analysis-Practice Problems

for (int i = 0; i < n; i++) {
 // Some O(1) operation

}

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // Some O(1) operation
 }

}

1. Asymptotic Analysis-Practice Problems

for (int i = 0; i < n; i++) {
 // Some O(1) operation

}

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // Some O(1) operation
 }

}

O(n)

O(n2)

1. Asymptotic Analysis-Practice Problems

for (int i = 0; i < n; i+=(n/2)) {
 // Some O(1) operation

}

while (n > 0) {
if (n % 2 == 1)

res = res * a;
a = a * a;
n = n / 2;

}

1. Asymptotic Analysis-Practice Problems

for (int i = 0; i < n; i+=(n/2)) {
 // Some O(1) operation

}

while (n > 0) {
if (n % 2 == 1)

res = res * a;
a = a * a;
n = n / 2;

}

O(1)

O(log n)

This algorithm
is called “Quick

Power”

More Info: https://www.rookieslab.com/posts/fast-power-
algorithm-exponentiation-by-squaring-cpp-python-implementation

1. Asymptotic Analysis-Practice Problems

1. Asymptotic Analysis-Practice Problems

Idea：
1. “Expand” the g(n) to 4 terms
2. Prove g(n) = O(n3 · log n) : Apply rule 3: Sum rule, only choose biggest among all.
3. Prove g(n) = Ω(n3 · log n) : Apply rule 3: Sum rule, only choose biggest among all.
4. Done!

Two key points:
1. Apply the rule to simplify the problem;
2. When proving Θ(·), we need to prove O(·) and Ω(·) together.

2. Complexity for recursion and divide-and-
conquer - Concepts
• To calculate the complexity for recursion and divide-and-

conquer algorithm:

• Step 1: Get the recursive expression (looks like: g(n) = g(n-1)
+ O(n), g(n) = g(n/2) + O(n))

• Step 2:
• Method 1: Unfold g(n) to g(1) by hand and get the answer.
• Method 2: Master theorem--

From Prof. Fang’s slides – lec 6 – page 19.

Problem 4-1 (page 107, 3rd edition)

Let you be
familiar
with it!

Question a-f: Use Master’s Theorem.

Question g: Expand the recursion

• T(n) = T(n-2) + n2

• = T(n-4) + (n-2)2 + n2

• = T(1) + 32 + …… + (n-4)2 + (n-2)2 + n2 (If n is odd)
• = T(2) + 42 + …… + (n-4)2 + (n-2)2 + n2 (If n is even)

• By the sum of the squares formula, We know that T(n) is Θ(n3).
• Some small tricks in our case:

• Even n: use formula with n=2k in it.
• Odd n: use sum difference (total sum-even sum)

Question g: Expand the recursion (details)

• Tricks to calculate:
• - Sum of even squares
• - Sum of odd squares

Look back: An example that upper/lower
bounds does not meet (Will not be in exam)

For expression like:
T(n) = T(7n/10) + log(n)

Cannot use Master Theorem.

--But we can do scaling (放缩)
--So we can find a good upper
bound, O(n);
--And a good lower bound,
Ω(log n)!

(Will not be tested. Just for fun!)

Coding Question: Insertion Sort

• We provide three languages (C++/Python/Java) of code, with
corresponding reference answer on Blackboard.

• The sorting function should **return void**, i.e., You need to modify
in-place.

• The problem is not difficult, but you need to think about “edge cases”.

How It Works:
1.Start with the second element (index 1) in the array, treating the first

element as already sorted.
2.Compare the current element with the previous elements.
3.Insert the current element into the correct position by shifting the larger

elements one position to the right.
4.Repeat the process for each of the elements in the array.

From Prof. Fang’s slides – lec 4 – page 4.

3. Q & A

	CSC3100 Data Structures�Tutorial 3
	Contents
	1. Asymptotic Analysis-Concepts
	Upper & lower bound? (1)
	Upper & lower bound? (2)
	Upper & lower bound? (3)
	Rules: help you calculate complex one
	1. Asymptotic Analysis-Practice Problems
	1. Asymptotic Analysis-Practice Problems
	1. Asymptotic Analysis-Practice Problems
	1. Asymptotic Analysis-Practice Problems
	1. Asymptotic Analysis-Practice Problems
	1. Asymptotic Analysis-Practice Problems
	2. Complexity for recursion and divide-and-conquer - Concepts
	幻灯片编号 15
	幻灯片编号 16
	Question a-f: Use Master’s Theorem.
	Question g: Expand the recursion
	Question g: Expand the recursion (details)
	Look back: An example that upper/lower bounds does not meet (Will not be in exam)
	幻灯片编号 21
	Coding Question: Insertion Sort
	How It Works:
	3. Q & A

