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A B S T R A C T

For dynamic collision-free trajectory planning in dual-robot and human collaborative tasks, this paper develops
an online dual-robot Mutual Collision Avoidance (MCA) scheme based on convex optimization. A novel convex
optimization formulation model, named Disciplined Convex programming by Shifting reference paths (DCS), is
proposed for solving the single-robot trajectory optimization problem. Furthermore, a new dual-robot trajectory
convex optimization algorithm is presented for online adjustment of the dual-robot trajectories according
to the collaborative task priority. The overall pipeline, named DCS-MCA, generates collision-free and time-
optimal dual-robot trajectories, while prioritizing the task accessibility of the high-priority robot. Simulation
experiments demonstrate that DCS exhibits comparable performance to the current state-of-the-art single-robot
motion planner, while the DCS-MCA outperforms common algorithms by up to 30% in time optimality for
dual-robot collaborative tasks. The feasibility and dynamic performance of the proposed approach are further
validated in a real collaborative cell, illustrating its suitability for collaborative dual-robot tasks in moderately
dynamic environments.
1. Introduction

With the application of collaborative robots in industry goes deeper,
the field of human–robot collaboration has made great strides. The
early single-robot and human cooperation is no longer sufficient for
the task in certain complex industrial scenarios, where multiple robots
and humans need to work together [1]. Collaborative dual robots are
deployed to assist humans in completing tasks such as assembly [2] and
material handling [3]. This new requirement places higher demands
on the flexibility and responsiveness of the robot, as multiple robots
and humans share the same workspace where human collaborators and
other robots performing different tasks may create more uncertainty
for the robot. Since the hybrid environment is complex and dynamic,
how each robot can orderly plan its path to avoid other robots, hu-
man operators, and obstacles in the environments while satisfying the
overall task execution efficiency becomes the primary challenge in this
field today. In the context of joint collaboration between dual robots
and humans, this paper proposes an innovative solution for online
collision-free trajectory planning of dual-robot while considering both
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dynamic and static robot workspaces, task priority constraints, and
human collaboration safety conditions.

The classical single-robot motion planning algorithms are divided
into the following categories: sampling-based planning algorithms, neu-
ral network (NN)-based algorithms, and optimization-based planning
algorithms.

Sampling-based planning algorithms include PRM [4,5] with its
variants and RRT [6–8] with its variants, among which Rapidly ex-
ploring Random Trees (RRT) and especially RRT* are the most popular
sampling-based motion planning algorithms. RRT provides probabilistic
completeness and RRT* achieves asymptotic convergence for solution.
Kaltsoukalas et al. [9] proposed an algorithm based on intelligent
sampling on a high-dimension joint space grids. Wang et al. [10]
proposed an improved RRT* algorithm based on the sampling pool and
restricted nearest node strategy. Recently, Merckaert et al. [11] intro-
duced a human–robot collaboration planning and control framework
that combines the RRT planner with an explicit reference governor.
Sampling-based planning algorithms necessitate a delicate balance
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between planning efficiency and path quality. Particularly in high-
dimensional and intricate planning spaces, achieving both asymptotic
optimality and search efficiency poses a formidable challenge. The
dynamic performance of planners typically comes at the expense of
compromising the quality of the generated paths.

In contrast, the NN-based methods are superior to sampling-based
methods in terms of dynamic performance. One famous NN-based
planner is MPNet [12], which used two sub-networks to generate a
series of critical waypoints, with which a collision-free optimized path
was generated by the post-processing algorithms. Recently, another NN
approach [13] based on the distribution of robot empirical configu-
rations has been proposed for human–robot collaboration. The neural
network is used to produce discrete path points in the configuration
space, and then the trajectories are generated by improved STOMP
optimization. Duguleana et al. [14] proposed an redundant manipu-
lator collision avoidance motion planning algorithm by reinforcement
learning. However, these methods seldom consider kinetic constraints,
and they usually require additional steps to optimize and smooth the
final solution path. In addition, NN-based methods need large scale of
training data and are lack of interpretability.

On the other hand, classical optimization-based planning algorithms
do not rely on any prior data and the kinetic constraints can be
considered. Algorithms such as CHOMP [15] and STOMP [16] start
from an initial trajectory connecting the initial and target configura-
tions, and then optimize iteratively to satisfy collision-free constraints
and kinetic constraints while minimizing the length cost. Therefore,
the trajectories produced by optimization-based algorithms are gen-
erally smooth and locally optimal. However, these algorithms rely
on gradient information, which requires differentiable cost function,
and the solution trajectory quality may be significantly influenced by
the initial trajectory. While the reference database, path selection and
modification steps of DCS-MCA algorithm provide good initialization
to avoid the impact of poor random initial trajectories. Convex opti-
mization is another approach, but many constraints in motion planning
such as obstacle avoidance are naturally non-convex, which is difficult
to be formulated as convex optimization problems. Various methods
have been developed in existing research to deal with nonconvexities.
Açikmese et al. [17] introduced lossless convexification by expanding
the space. Liu et al. [18] applied successive linear approximations to
remove nonconvex constraints. TrajOpt [19] attempted to use sequen-
tial convex optimization for planning. GCS [20] innovatively combined
convex optimization with graphs, to significantly reduce the complexity
of the problem. Most of these algorithms are faced with the trade-
off between the solving efficiency and the preservation of the search
domain.

To further address the above problems, this paper proposes an
empirical path as the initial trajectory of the optimization in convex
optimization algorithm for single-robot obstacle avoidance. With the
initial trajectory and the given dynamic and static obstacles, a convex
objective function is designed and a series of techniques to transform
the nonconvex constraints into a convex one are applied. In addition,
the problem is transformed as a DPP problem, and the computational
efficiency is greatly improved. In the process of approximating the
non-convex conditions, DCS tries to ensure that the optimality of the
solution is not affected. With the help of off-the-shelf convex optimiza-
tion solver, the proposed optimization method can solve the problem
fast and optimally, thus can be applied to online collision avoidance
trajectory planning tasks.

Based on the above single-robot trajectory planning methods, vari-
ous studies have proposed different schemes to solve the collaborative
path planning problem of dual robots. Zhang et al. [21] presented
a recursive neural network (RNN)-based mutual collision avoidance
algorithm to tackle the dual-robot motion planning problem. Wong
et al. [22] offered a soft agent-critical (SAC) based motion planning
method to enable the robot to effectively avoid self-collision, with
2

two neural networks controlling two robot arms motion direction re-
spectively. Choi et al. [23] presented a B-spline trajectory planning
algorithm for a two-armed robot that can produce collision-free and
smooth trajectories. The above approaches only focus on the obstacle
avoidance relationship between the two robots in the spatial dimension,
i.e., they require the trajectory path points of the two robots do not
intersect at all. However, those dual-robot trajectory planning models
are not suitable for some practical industrial applications. For example,
one robot is performing an urgent task that it must cross the other
robot’s trajectory, or multiple robots need to pass through a certain
intersection. Reasonable solutions in the temporal dimension need to be
considered as well. To the authors’ knowledge, there is no optimization-
based collaborative trajectory planning method for two robots that
can plan obstacle avoidance trajectories considering both spatial and
temporal dimensions under task priority constraints.

This paper adopts a convex optimization approach to obtain the
dual robot collision free motion trajectory. Based on the results from
the previous step of the single-robot path generation, the timestamps
of the two robots passing through the critical sections are adjusted.
The solution pipeline can get optimal trajectories fast. Simulations and
real experiments verify the effectiveness of the algorithm under various
testing scenarios.

Major contributions of this paper are: (1) Utilize a novel pattern
to transform the trajectory generation problem into a batch of convex
optimization problems while preserving the nature of the original prob-
lem. (2) Boost the solving speed by converting the formulated problem
into a DPP problem. (3) Propose a novel pipeline in optimizing dual
robots trajectories to avoid collision with each other. (4) Apply some
techniques in improving trajectory quality and computation efficiency.

2. Problem construction and algorithm overview

2.1. Problem construction

The DCS-MCA method proposed in this paper is applicable to
solve the dual robot–human dynamic collision avoidance problem. Two
robots workspaces are 𝑆𝑅1, 𝑆𝑅2 ⊂ R3 respectively and the human
workspace is 𝑆ℎ𝑢𝑚𝑎𝑛 ⊂ R3. The robots-human shared workspace is
𝑆𝑠ℎ𝑎𝑟𝑒 = (𝑆𝑅1 ∩𝑆𝑅2) ∪ (𝑆𝑅1 ∩𝑆ℎ𝑢𝑚𝑎𝑛) ∪ (𝑆𝑅2 ∩𝑆ℎ𝑢𝑚𝑎𝑛). The method plans
two robots motion trajectory online while (1) finishing the tasks based
on the priority. (2) not colliding with the static obstacles in 𝑆𝑅1, 𝑆𝑅2.
3) not colliding with other robot and human in 𝑆𝑠ℎ𝑎𝑟𝑒.

To simplify the algorithm design works, all obstacles in the workspac
re approximated as spheres in different radius, and the static obstacles
pheres in the system can be input in advance. Dynamic human
rms can be modeled as a sequence of balls along the arm, and arm
ocalization can be obtained by sensors like cameras, IMUs, lasers and
agnetic trackers.

.2. Algorithm overview

A trajectory generation algorithm DCS-MCA that satisfies obstacle
voidance requirements by convex optimization for dual-robot end-
ffectors is proposed in this paper, as shown in Fig. 1. The main steps of
he algorithm are briefly described as follows. First, two robots’ obstacle
ollision-free trajectories are obtained separately by the preprocessing
teps, step 1 and step 2. This routine is also known as DCS. So far, two
obots are time optimal to the destination with obstacle collision-free
roperty, but since their paths are optimized individually, the robots
ay collide with each other. Therefore, in the second step, some valid

rajectory combination candidates are made from the previous step.
f the candidate has robots spatial–temporal intersection, a secondary
ptimization procedure (step 3) is executed to optimize the low priority
obot’s time series to avoid collision to the high priority robot. Eventu-
lly, the solution with the shortest time among all feasible candidates is
elected as the final solution. In this way, two robots are free of collision
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Fig. 1. Overall structure of the DCS-MCA algorithm.
with each other while maintaining the optimality. The trajectories are
finally generated through interpolation (step 4).

The general algorithmic of DCS-MCA steps are given in Algorithm
1. The details of the above steps are elaborated in the following
sub-sections.

Algorithm 1: Overall algorithmic steps for the proposed DCS-MCA
approach

Input: Left, right robot tasks with priority, and the obstacles
Output: Optimized left, right path with timestamp,

{𝛷′
𝐿, 𝑇𝐿}, {𝛷

′
𝑅, 𝑇𝑅}

1. Single-robot trajectory generation (two robots separately):
a. Generate reference path 𝛷 of the task from the database;
b. Re-sample the reference path 𝛷;
c. Construct batch of disciplined parameterized programming

problems;
d. Solve the problems and get the solution paths {𝛷′

𝑖 , 𝑇𝑖};
2. Make joint robot path combinations {𝛷′

𝐿,𝑖, 𝑇𝐿,𝑖} × {𝛷′
𝑅,𝑗 , 𝑇𝑅,𝑗}

from step 1.
3. Optimize joint robot path combinations:

a. Construct joint-trajectory optimization problems;
b. Choose the best trajectory {𝛷′

𝐿, 𝑇𝐿}, {𝛷
′
𝑅, 𝑇𝑅} among all

combinations;
4. Interpolate the final trajectory.

3. Algorithm design

3.1. Single robot trajectory generation

The aim of single robot trajectory generation in DCS is to obtain a
single robot obstacle collision-free optimal path 𝛷′ ∈ R𝑁𝑝×3 (where 𝑁𝑝
denotes number of points on the path) with corresponding timestamp at
each waypoints 𝑇 ∈ R𝑁𝑝 from the reference experience path 𝛷 ∈ R𝑁𝑝×3.
One straight-forward idea to avoid collision with obstacles is to shift the
influenced points to the free space. To make the problem work well
with high efficiency, DCS algorithm consists of 3 sub-steps described
below.

3.1.1. Reference path generating
The reference database stores experience paths in the task object,

a tuple of four elements (start, end, obs, path), where start and end are
Cartesian positions, and obs is the obstacle sets. The path 𝛷, which has
the highest similarity to the current task, is selected as the reference
path from the database. The similarity 𝑆 between the current task and
tasks in the experience database can be calculated by the formula (1)
and 𝜆 is a scale factor, which equals 0.1 in our case.

𝑆(𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2) = 1 (1)
3

𝑆𝑝𝑜𝑖𝑛𝑡𝑠 + 𝜆𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
Where 𝑆𝑝𝑜𝑖𝑛𝑡𝑠 utilizes second norm to measure the similarity between
two tasks’ starting and ending points respectively. In addition, if the
total distance difference is larger than 0.1, this term is set to 0 directly.

𝑆𝑝𝑜𝑖𝑛𝑡𝑠 = ‖𝑠𝑡𝑎𝑟𝑡1 − 𝑠𝑡𝑎𝑟𝑡2‖ + ‖𝑒𝑛𝑑1 − 𝑒𝑛𝑑2‖ (2)

The Hausdorff distance is naturally suitable to measure the similar-
ity of two obstacle sets, so the 𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 is defined as formula (3), with
the distance function 𝑑 defined as the distance between two obstacles’
centers.

𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 = max{ sup
𝑎∈𝑜𝑏𝑠1

inf
𝑏∈𝑜𝑏𝑠2

𝑑(𝑎, 𝑏), sup
𝑏∈𝑜𝑏𝑠2

inf
𝑎∈𝑜𝑏𝑠1

𝑑(𝑏, 𝑎)} (3)

Because calculating the Hausdorff distance is inefficient, a practical
approach is adopted. Initially, 𝑆𝑝𝑜𝑖𝑛𝑡𝑠 for all tasks are calculated and the
top-K task candidates are selected, where 𝐾 = 8 in our case. Following
this, the total similarity for each of these candidates is determined to
identify the best reference path.

If no similar path can be found (i.e., the best similarity is smaller
than a threshold), the line segment from the current position to the
destination is used as the reference path. Two techniques to increase
the quality of the generated reference path are applied. First, for each
waypoint on the reference path, it is modified to be the point at which
the robot’s end effector and the end arm are closest to any obstacle.
This allows for better modeling of the distance between the reference
trajectory and obstacles, increasing the success rate of solving the later
problem. In addition, to match the problem construction part, adjusting
the reference path is needed so that all waypoints of the path are all on
the same side of each obstacle. An example is shown in Fig. 2. The fitted
plane of the internal points of each obstacle is obtained by techniques
such as linear regression. Then, all points are shifted to the same side of
the plane that passes through the center of the obstacle and is parallel
to the fitted plane. In this way, all the reference points are in the same
side of the obstacle, which brings much convenience in further problem
formulation in Section 3.1.3.

3.1.2. Reference points re-sampling
A uniform-sampled waypoint reference path, as discussed in Sec-

tion 3.1.1 is not required. This is due to the fewer points needed
to construct a new path in an obstacle-free space. On the contrary,
in the space near the obstacle, more points are required to build a
smoother path. Inspired by [24], an algorithm is designed to resample
the waypoints on the path. First, the path is uniformly partitioned to 𝑁𝑚
parts. Second, distance between each partition to the nearest obstacle
surface is calculated, denoting as 𝑑𝑖. Then, a designed probabilistic
function 𝑝𝑖 = 𝑓 (𝑑𝑖) (formula (4)) is applied to each segment. Finally, all
𝑝𝑖 = 𝑝𝑖∕

∑𝑁𝑚
𝑗=1 𝑝𝑗 are normalized, and a piece-wise constant probability

density function is produced along the path segments. Total of ⌈0.6 ⋅
𝑁𝑚⌉ points from this distribution are sampled using inverse transform
sampling method. This procedure allocates more waypoints to the
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Fig. 2. Path modification.

Fig. 3. Path resample.

regions near the obstacle-conflicting space while leaving few points in
the free space. As a result, the total number of waypoints along the
path decreased, which reduces problem complexity without affecting
the solving stage. Fig. 3 shows a resampling example.

𝑓 (𝑑𝑖) =

⎧

⎪

⎨

⎪

⎩

3, 𝑑𝑖 ∈ (−∞, 0.025 m)
2, 𝑑𝑖 ∈ [0.025 m, 0.075 m)
1, 𝑑𝑖 ∈ [0.075 m,+∞)

(4)

3.1.3. DPP construction
By the definition of convexity, traditional collision avoidance con-

straints such as the norm distance larger than a constant value are
non-convex. To overcome this gap, the problem is constructed in a
novel way, that is, approximating the feasible region into a frustum.
To maintain the size of search domain, DCS would also check if the
new path can be on the other side of the obstacle. As shown in Fig. 4,
if there is an obstacle blocked on the reference path (shown in blue
line), the algorithm would try to obtain the solution on two sides of
the obstacle (shown in red and green lines).

It is worth noting that if there is 𝑛 collided obstacles,A batch of 2𝑛
convex problems need to be solved, which may be very time consum-
ing. Therefore, it is further formulated into a disciplined parameterized
programming problem. A good property of DPP is that the consecutive
compilation of the same problem with different parameters only takes
a much shorter time.

Now, the discussion focuses on how to formulate the disciplined
parameterized convex problem. The set Free, denotes the points that are
out of any obstacles, and the set Occupied denotes the points that are
in any obstacles. Each consecutive index range in Occupied are defined
as a collision segment. The set of waypoint index ranges is denoted
4

Fig. 4. Paths in two directions around an obstacle.

as 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = {(𝑠𝑡𝑎𝑟𝑡𝑖, 𝑒𝑛𝑑𝑖)}
𝑁𝑐
𝑖=1 for a total of 𝑁𝑐 collision segments. In

each range, 𝑠𝑡𝑎𝑟𝑡𝑖 denotes the starting waypoint index of 𝑖th collision
segment, and 𝑒𝑛𝑑𝑖 denotes the ending waypoint index of 𝑖th segment.
The occupied points in each collision segment {(𝑠𝑡𝑎𝑟𝑡𝑖, 𝑒𝑛𝑑𝑖)} are mir-
rored through the center of the obstacle to form the opposite side path.
As shown in Fig. 4, it is easy to observe that the path waypoint traverse
indices in original side and opposite side are different. For example, in
this figure, the original side traverse path (in green) in order of [2-3-
4-5-6-7]. On the contrary side, the points (in orange) are visited in the
order of [2-6-5-4-3-7].

To make the problems unified as a disciplined parameterized convex
problem, the side-control parameters are introduced, 𝑃𝑖 ∈ {0, 1}, to
control whether the new path would pass-by the 𝑖th obstacle on the
original side or on the opposite side. The parameters work like a switch.
When it is 1, the constraints make the path go from the original side
activates, forming a path in the original side. When it turns to 0, the
constraints force to form a path in the opposite side. In this way,
the problem formulation can be easily changed without affecting its
disciplined parameterized convex property. Details are explained in the
following part.

Decision Variables. There are spatial variables, 𝐷 ∈ R𝑁𝑝×3, repre-
senting each reference point’s offset to the new path. That is, new path
𝛷′ = 𝛷+𝐷. In addition, there are time variables, 𝑇 ∈ R𝑁𝑝 , representing
the timestamps that the robot arrives at the waypoints.

Objective Function. The goal is to minimize the robot motion time.
Therefore, the robot should arrive the destination (at the last index, 𝑁𝑝)
as soon as possible. So the objective function is:

minimize
𝐷,𝑇

𝑇 [𝑁𝑝] (5)

Constraints. First constraint are designed for decision variables’
internal properties. The start position and the end position should not
be changed during the optimization, which means that

𝐷1 = 𝟎, 𝐷𝑁𝑝
= 𝟎 (6)

Also, all new waypoints should be in the 𝑁𝑏 workspace polygon bound-
ary planes 𝐰𝑇 ⋅ 𝑥 + 𝑏 ≤ 0:

𝐰𝑇
𝑖,𝑗 ⋅𝛷

′
𝑖 + 𝑏𝑖,𝑗 ≤ 0, ∀𝑖 = 1,… , 𝑁𝑝, 𝑗 = 1,… , 𝑁𝑏 (7)

Second, the robot cannot arrive latter point earlier than the former
point. This constraint sets are different among points in Free and points
in Occupied. For points in Free, the constraints are

𝑇𝑖 ≤ 𝑇𝑖+1, ∀𝑖 ∈ index(𝐹𝑟𝑒𝑒) (8)

where index(⋅) returns the index of the input point. As for points in

Occupied, the constraints are related to the side-control parameter 𝑃𝑖.
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For any {(𝑠𝑡𝑎𝑟𝑡𝑗 , 𝑒𝑛𝑑𝑗 )} segment in Intersect,
{

𝑃𝑗 ⋅ (𝑇𝑖+1 − 𝑇𝑖) ≥ 0
(1 − 𝑃𝑗 ) ⋅ (𝑇𝑖+1 − 𝑇𝑖) ≤ 0,

∀𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑗 ,… , 𝑒𝑛𝑑𝑗 (9)

Note that when 𝑃𝑗 = 1, first inequality 𝑇𝑖+1 ≥ 𝑇𝑖 takes effects while
second equation 0 ≤ 0 always holds, taking no effects. This is the
constraints for the original side. When 𝑃𝑗 = 0, 𝑇𝑖+1 ≤ 𝑇𝑖, which are
the constraints for the opposite direction.

Other than internal constraints, there are external speed constraints
and no-collision constraints. The speed constraints need to be consid-
ered in Free and Occupied separately. For Free set, it is supposed that
the speed between two consecutive reference points should be smaller
than the maximum speed limitation lim𝑠. That is,

‖𝛷′
𝑖+1 −𝛷′

𝑖‖ ≤ lim
𝑠
⋅(𝑇𝑖+1 − 𝑇𝑖), ∀𝑖 ∈ index(𝐹𝑟𝑒𝑒) (10)

As for points in Occupied set, the similar idea is used as the time
constraints mentioned above to construct the speed constraints. For any
{(𝑠𝑡𝑎𝑟𝑡𝑗 , 𝑒𝑛𝑑𝑗 )} segment in Intersect,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

‖𝛷′
𝑖+1 −𝛷′

𝑖‖ ≤ lim
𝑠
⋅(𝑇𝑖+1 − 𝑇𝑖) +𝑀 ⋅ (1 − 𝑃𝑗 ),

∀𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑗 − 1,… , 𝑒𝑛𝑑𝑗 ;

‖𝛷′
𝑖+1 −𝛷′

𝑖‖ ≤ lim
𝑠
⋅(𝑇𝑖+1 − 𝑇𝑖) +𝑀 ⋅ 𝑃𝑗 ,

∀𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑗 ,… , 𝑒𝑛𝑑𝑗 − 1;

‖𝛷′
𝑠𝑡𝑎𝑟𝑡𝑗−1

−𝛷′
𝑒𝑛𝑑𝑗

‖ ≤ lim
𝑠
⋅(𝑇𝑒𝑛𝑑𝑗 − 𝑇𝑠𝑡𝑎𝑟𝑡𝑗−1) +𝑀 ⋅ 𝑃𝑗 ,

‖𝛷′
𝑠𝑡𝑎𝑟𝑡𝑗

−𝛷′
𝑒𝑛𝑑𝑗+1

‖ ≤ lim
𝑠
⋅(𝑇𝑒𝑛𝑑𝑗+1 − 𝑇𝑠𝑡𝑎𝑟𝑡𝑗 ) +𝑀 ⋅ 𝑃𝑗 ,

(11)

where 𝑀 is a very large number (In all experiments, 𝑀 is set to 106).
When 𝑃𝑗 = 1, the first inequality takes effects, while the remaining
three inequalities always holds. The speed constraints are set for the
trajectories at the original side. On the contrary, when 𝑃𝑗 = 0, the first
inequality always holds while last three inequalities take effects. Since
on the opposite direction, the indices traverse order is inverted, last
three inequalities helps forming the speed limitation for the opposite
side.

The most critical point is the constraint sets for obstacle avoidance.
For all points in 𝐹𝑟𝑒𝑒 ∪ 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑, the constraint requires them not to
enter other obstacles. The feasible set for 𝛷′

𝑖 = 𝛷𝑖 + 𝐷𝑖 is a half-space
defined by:

𝐷𝑖 ⋅
𝛷𝑖 − 𝑐

‖𝛷𝑖 − 𝑐‖
≤ 𝑑𝑠𝑎𝑓𝑒 + 𝑟 − ‖𝛷𝑖 − 𝑐‖, ∀𝑖. (12)

where 𝑐 ∈ R3, 𝑟 ∈ R+ is the center and radius of the obstacle. To
improve computation efficiency, the obstacle that is close enough (in
the experiment, it is 0.5 m) to the reference waypoint 𝛷𝑖 is considered
only.

Second, for the points in Occupied set, they need to be moved out
of the obstacle. As shown in Fig. 4, the feasible set for 𝛷′

𝑖 = 𝛷𝑖 +𝐷𝑖 is
the intersection of a cone and some half-spaces. Integrated with side-
control parameters, the constraints for any {(𝑠𝑡𝑎𝑟𝑡𝑗 , 𝑒𝑛𝑑𝑗 )} segment in
Intersect can be written as:
⎧

⎪

⎨

⎪

⎩

𝐷𝑖 ⋅ (2𝑃𝑗 − 1) ⋅ 𝛷𝑖−𝑐
‖𝛷𝑖−𝑐‖

≥ 𝑑𝑠𝑎𝑓𝑒 + 𝑟 − (2𝑃𝑗 − 1) ⋅ ‖𝛷𝑖 − 𝑐‖,

𝐷𝑖 ⋅ (2𝑃𝑗 − 1) ⋅ 𝛷𝑖−𝑐
‖𝛷𝑖−𝑐‖

≥ cos(𝑎𝑛𝑔𝑙𝑒) ⋅ ‖𝐷𝑖‖,

∀𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑗 ,… , 𝑒𝑛𝑑𝑗

(13)

The first inequality forms a half-space, making the points move away
from the intersected obstacle. The second inequality forms a cone with
vertex angle equals 𝑎𝑛𝑔𝑙𝑒 degree. In all experiments, the angle is set to
𝜋∕6. When 𝑃𝑗 = 1, 2𝑃𝑗 − 1 = 1, creating a feasible set at original side
(Fig. 5, upper red region). When 𝑃𝑗 = 0, the feasible set at the opposite
side (Fig. 5, lower red region) activates.

Solving. Any mature DPP-enabled convex optimization solver can
be used for solving this disciplined parameterized convex problem. The
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Fig. 5. Collision avoidance constraints in two directions around an obstacle.

side-control parameters {𝑃𝑖} are continuously changed with all possible
combinations, and the solver’s results are recorded. The solution trajec-
tories are then used in joint robots trajectory optimization in the next
section.

3.2. Joint robots trajectory optimization

By now, two bundles of obstacle collision-free trajectories are ob-
tained for left and right robots. As indicate in step 2 of Algorithm
1, best-𝑁 trajectories from two bundles are combined, forming 𝑁2

candidate trajectories for the final solution. Some candidates do not
have robots mutual collisions. But some candidate’s trajectories may
have collisions with each other. For these candidates, in step 3 of
Algorithm 1 two robot’s trajectories are jointly optimized, making it
free of collisions.

Following are details in building this problem as a convex problem.
Decision Variables. The main strategy is to let low priority robot

wait for high priority robot outside of the critical section. Therefore,
the decision variable is the time delayed 𝑇 ∈ R𝑁𝑝 at each waypoint of
low priority robot trajectory obtained from the last section.

Objective Function. The robot with high-priority’s trajectory re-
mains the same. The time for the low priority robot is intended to be
shortened. That is,

minimize
𝑇

𝑇 [𝑁𝑝] (14)

Constraints. The key constraints are two robots cannot get too close
at the same time. First, all close waypoint pairs {𝑙_𝑖𝑛𝑑𝑒𝑥, ℎ_𝑖𝑛𝑑𝑒𝑥} are
generated from two robot trajectories, where 𝑙_𝑖𝑛𝑑𝑒𝑥 is the waypoint
index for the low priority robot, and ℎ_𝑖𝑛𝑑𝑒𝑥 for the high priority robot.
Then the constraints can be simply defined as

𝑇 𝑙𝑜𝑤
𝑙_𝑖𝑛𝑑𝑒𝑥 + 𝑇𝑙_𝑖𝑛𝑑𝑒𝑥 − 𝑇 ℎ𝑖𝑔ℎ

ℎ_𝑖𝑛𝑑𝑒𝑥 ≥ lim
𝑡

(15)

Same as the last section, there are both time constraints and speed
constraints for all 𝑖 = 1,… , 𝑁𝑝:
{

𝑇 𝑙𝑜𝑤
𝑖 + 𝑇𝑖 ≤ 𝑇 𝑙𝑜𝑤

𝑖+1 + 𝑇𝑖+1
‖𝛷𝑖+1 −𝛷𝑖‖ ≤ lim𝑠 ⋅(𝑇 𝑙𝑜𝑤

𝑖+1 + 𝑇𝑖+1 − 𝑇 𝑙𝑜𝑤
𝑖 − 𝑇𝑖)

(16)

where 𝑇𝑙𝑜𝑤 and 𝛷 is the low priority robot’s timestamp and path
obtained from the last section.

Solving. Any well-established commercial convex optimization
solver can be used for solving. Notice that the path combinations are
independent with each other, so multiprocessing techniques could be
used in this process.

Finally, all candidates are free of collision with static obstacles and
the other robot. The trajectory combination with the shortest operating
time for both left and right robots is utilized as the final trajectory.
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Now, the operating time with high priority robot remains the same, as
optimal as before. The operating time of the low priority robot was also
minimized by choosing the fastest combinations in the search space.
Therefore, the proposed DCS-MCA algorithm guarantees the optimality
of the trajectory of the left and right robots.

In addition, this new trajectory will be added in the experience
database, which can be used later.

3.3. Interpolation

By this step, final result are two series of path waypoints. Quintic
B-splines [25] interpolation can be applied to output continuous and
smooth motion trajectories for industrial robot use.

The general equation of B-spline curve is described as

𝐺 (𝑢) =
𝑛
∑

𝑖=1
𝑔𝑖𝑁𝑖,𝑘 (𝑢) (17)

where 𝑢 (0 ≤ 𝑢 ≤ 1) is the B-spline normalized trajectory parameter. 𝑘
is the degree and 𝑘+1 is the order. 𝑔𝑖 is the 𝑖𝑡ℎ control point. 𝑁𝑖,𝑘 is the
𝑖𝑡ℎ basis function of the B-spline that satisfies the de Boor-Cox formula
as follow

𝑁𝑖,𝑘 (𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖
𝑁𝑖,𝑘−1 (𝑢) +

𝑢𝑖+𝑘+1 − 𝑢
𝑢𝑖+𝑘+1 − 𝑢𝑖+1

𝑁𝑖+1,𝑘−1 (𝑢) ;

𝑁𝑖,0 (𝑢) =

{

1, 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0, elsewhere

(18)

where 𝑢𝑖 (𝑖 = 1, 2,… , 𝑛 + 𝑘 + 1) is the knot, which is parameterized by
the time corresponding to the current position, and 𝑈 =

[

𝑢1, 𝑢2,… , 𝑢𝑛+𝑘+1
]is

the knot vector. Since 𝑘 = 5, for 𝑁𝑝 waypoints, a total of 𝑁𝑝 +10 knots
are used for Quintic B-splines interpolation. After this step, the velocity
and acceleration along the trajectory are smooth and continuous.

4. Experiments and result analysis

4.1. An industrial use case and implementation details

The approach is validated with an industrial use case of human–
robot collaboration applied in component assembly. During the col-
laborative process, the human operator is at the side of the table,
working in conjunction with two industrial robots that are positioned
at the front corners of the workspace. The main tasks of two robots
are moving metal parts between the loading area at the front and the
assembly area at the back according to different assemble procedures.
Fig. 6 shows the schematic diagram of the test environment. In this
use case, there is a large intersection of the motion space of the two
robots. In addition, some static obstacles (e.g., tools, monitors) and
dynamic obstacles (e.g., operator’s hands) interfere with two robots’
motion space.

The test platform is a laptop computer configured with Apple M2
chip at 3.49 GHz. The workspace size is 0.8 m × 0.8 m × 0.5 m for both
simulation and real experiments. The algorithm use the CVXPY [26]
with solver ECOS [27] for solving the convex problems. SciPy [28] is
used for path interpolation. In all of the simulation and real experi-
ments, the algorithm’s hyper-parameters are set as below: 𝑁𝑝 = 41,
𝑑𝑠𝑎𝑓𝑒 = 0.06 m, lim𝑑 = 0.20 m, lim𝑡 = 3𝑠, lim𝑠 = 0.05 m∕s, 𝑎𝑛𝑔𝑙𝑒1 =
𝑎𝑛𝑔𝑙𝑒2 = 𝜋∕6 rad. The reference paths utilized are consistently straight
line segments between the starting and ending points.

4.2. Simulation experiment

4.2.1. Static simulation without human motion
In this part, three typical scenes are simulated to show the strength

and properties of the proposed algorithm. The task information and
obstacle information are manually input to the planner. The collision-
free trajectories for both left and right robot are generated. The path
6

Fig. 6. Dual robot collaborative assembly workstation.

Fig. 7. Static Exp. 1 trajectories visualization.

is shown in the 3D figure, and the color on the path demonstrates the
timestamp that the robot passes on that segment of path.

For the static experiment 1, Fig. 7 shows that the DCS algorithm
generates four candidate solutions when meeting two obstacles on the
way. The search domain is large enough.

In addition, the Table 1 shows the effectiveness of the DPP for-
mulation. It takes around four times of time to solve four different
problems than do one problem without DPP technique, but with DPP,
the computation time is merely a little more than that for solving one
single problem.

This scenario further explores the effectiveness of the proposed
resampling technique. When the resampling procedure is enabled, the
total solving time is 25% shorter than the time without resampling.
Fig. 7 demonstrates that the path quality and optimality are kept the
same under two settings.

Experiment 2 is a static test designed to demonstrate the third
step in the DCS-MCA algorithm. In this experiment, the left robot has
higher priority than the right robot. Fig. 8(a) shows the trajectories just
after the step 2. The red dashed circle is the critical area, where the
left and right robot will enter together 7 s after starting, so a crash
may occur consequently. Fig. 8(b) shows the trajectories after the joint
optimization (step 3), which optimizes the right robot speed. It can be
observed that the lower priority robot, the right robot waits for the left
robot to cross the middle channel outside of the critical section. By this
schedule, two robots kept enough safety distance with each other.

The static experiment 3 shows the whole pipeline of the algorithm.
After step1, each robot has two possible candidate paths. Then in
the step 2 they are grouped, forming 4 combinations as shown in
Figs. 9(a)–9(d). The step 3 of the DCS-MCA algorithm is applied to these
combinations. For the combination 4, since two robots have tentative
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Table 1
Static Exp. 1, comparison of robot motion time, algorithm solving time among three DCS configurations in the same
robot task.
Configuration Candi No. Robot motion time/𝑠 Compile time/𝑠 Solve time/𝑠 Total solving time/𝑠

1 14.06 0.1016 0.0057

0.4146w/o DPP 2 13.36 0.0811 0.0042
w/o resample 3 17.65 0.0920 0.0046

4 20.35 0.0808 0.0042

1 14.06 0.0984 0.0095

0.1674w/ DPP 2 13.36 0.0004 0.0078
w/o resample 3 17.65 0.0004 0.0077

4 20.35 0.0004 0.0077

1 14.02 0.0778 0.0078

0.1237w/ DPP 2 13.29 0.0004 0.0064
w/ resample 3 16.33 0.0004 0.0061

4 20.12 0.0004 0.0063
Fig. 8. Static Exp. 2, trajectories with time series.

Fig. 9. Final trajectory combinations in static Exp. 3.

collision in the middle channel, the algorithm is activated to optimize
the timestamps of the right robot to avoid collision. Before step 3,
combination 4 is the fastest, with 𝑇𝐿4 = 12.88 s and 𝑇𝑅4 = 13.37 s.
After step 3’s optimization, the right robot needs to wait for the left
outside of the channel, making 𝑇𝑅4 becomes 19.34 s, much slower than
the 𝑇𝑅3 = 14.25 s. As a final result, the combination 3 is chosen as
the final solution. All statistics about this experiment can be found at
Table 2.

4.2.2. Algorithm performance comparison
In this subsection, the proposed algorithm is compared with other

robot trajectory planning algorithms in two tasks. The first task is
7

single-robot trajectory generation with obstacles. The DCS algorithm
is compared with the frequently-used sampling-based planner RRT-
star [7], historical path based GMM/GMR method from Hu et al. [29],
and the state-of-the-art optimization-based method GCS [20]. The test
workspace is the same as mentioned in Section 4.1. All details including
test case generation method, algorithm implementation procedures can
be found in Appendix A. Three indicators are measured in this experi-
ment: the generation success rate (success was defined as the algorithm
generates the path with no collisions), average solving time, and path
optimality. Average trajectory length ratio �̄�𝑙𝑒𝑛 is used, which is defined
in formula (19) to indicate the path optimality. Where the 𝑁 indicates
number of test cases and the 𝐿𝑒𝑛_𝑜𝑡ℎ𝑒𝑟𝑠𝑖, 𝐿𝑒𝑛_𝐷𝐶𝑆𝑖 represent the 𝑖th
path length generated by the compared algorithm and the proposed
DCS algorithm respectively.

�̄�𝑙𝑒𝑛 =
1
𝑁

𝑁
∑

𝑖=1

𝐿𝑒𝑛_𝑜𝑡ℎ𝑒𝑟𝑠𝑖
𝐿𝑒𝑛_𝐷𝐶𝑆𝑖

(19)

Several interesting points can be discovered from Table 3. In the
task of single robot path generation, the DCS algorithm is ahead of the
traditional planner RRT-star and the historical path based GMM/GMR
in all aspects. This is because RRT-star and GMM/GMR methods are
sampling-based and therefore their solutions do not necessarily fit the
boundaries of the feasible domain in order to achieve the optimal. In
addition, those algorithms use random search optimization methods,
which converge slower than the convex optimization-based method
DCS. In addition, since GCS’s search domain in the workspace is a graph
wrapped around the obstacles, which is larger than the search domain
in the DCS algorithm, the GCS has higher solving success rate than
the DCS. This experiment surprisingly shows that the proposed DCS
algorithm’s performance including solving speed and path optimality
is comparable with the start-of-the-art planning algorithm GCS via a
different modeling approach. More discussions between the proposed
algorithm and GCS will be made in Section 5.

The second task is the dual-robot trajectory generation with obsta-
cles. The algorithm is compared with a historical path-based method
from Kyrarini et al. [2]. The test cases are same as task 1, and the
implementation details of Kyrarini’s method can be found in appendix
as well. The measurement indicators in this experiment are generation
success rate, algorithm solving time and time optimality. It is note-
worthy that in the dual robot scenarios, robot motion finish time can
better measure the optimality than the robot trajectory length, since
two robots need temporal information to avoid collision with each
other. Similar as formula (19) in task 1, average motion time ratio �̄�𝑡𝑖𝑚𝑒
is utilized to indicate the time optimality.

From the Table 4, it is observed that the DCS-MCA algorithm has
higher generation success rate and time optimality than Kyrarini’s
method, while the DCS-MCA method is slower than Kyrarini’s method.
The complexity of Kyrarini’s method is lower than the DCS-MCA be-
cause the obstacle avoidance strategy of that algorithm is to directly
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Table 2
Statistics of four candidate combinations in experiment 3.
Combination Do Joint Optim L robot motion time/𝑠 R robot old motion time/𝑠 R robot new motion time/𝑠

1 No 15.06 14.25 14.25
2 No 15.06 13.38 13.38
3 No 12.88 14.25 14.25
4 Yes 12.88 13.38 19.35
Fig. 10. Dynamic simulation with human motion (Blue spheres indicate static obstacles. The yellow sphere indicates a dynamic obstacle, simulating a human arm entering the
scenario.)
Table 3
Algorithm efficiency comparison (task 1).
Method Success rate Solve time/𝑠 �̄�𝑙𝑒𝑛

Ours 0.988 0.0367 1.000
RRT-star [7] 0.956 0.1990 1.129
GMM/GMR [29] 0.800 10.8624 1.199
GCS [20] 1.000 0.0347 1.013

Table 4
Algorithm efficiency comparison (task 2).
Method Success rate Solve time/𝑠 �̄�𝑡𝑖𝑚𝑒

Ours 0.928 0.2935 1.000
Kyrarini [2] 0.747 0.0526 1.301

raise the 𝑧-axis height when the robots encounters an obstacle. There-
fore, her method is faster than ours. However, if the obstacles locate
at a relative high position, merely raising 𝑧-axis would cause the robot
to go beyond the workspace and thus make the solution infeasible. To
conclude, the DCS-MCA algorithm reaches better performance than the
Kyrarini’s method.

4.2.3. Dynamic simulation with human motion
In this section, a simulation experiment is given under dynamic

human–robot collaboration scene. Fig. 10 shows the robots real-time
planned trajectories and various obstacles during the process. Fig. 10(a)
shows the task’s initial configurations: the left and right robot are
going to send parts to the assembly area, and left robot has higher
priority. By now, the obstacles in this figures are static obstacles in
the workspace. The two robots move along the planned path, passing
the middle critical section one by one as shown in Fig. 10(b). In
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Fig. 10(c), the human arm enters the shared workspace, interfering with
the right robot’s path. The algorithm detects the situation and replans
the trajectories based on new obstacle position. The result trajectories
are displayed in Fig. 10(d). Then, the robots move along the new
path till reaching the destination as shown in Figs. 10(e) and 10(f).
It is worth noting that the algorithm could not plan a uniform height
trajectory because of the obstruction of the human arm, so the newly
generated trajectory took the approach of passing from above to reach
the terminal point.

4.3. Real scene experiment

The real scene environment consists of a work table, a vision
module, two collaborative robots and a human operator. The far end
of the work table is the parts loading area, while the close end of
the work table is the manual assembly area. Different static obstacles
like monitors and assemble tools exist on the work table. The two
robots are KUKA iiwa14 collaborative robot, including the robot body,
control computer, smartpad and SCHUNK Co-act EGP-C 40-N-N-KTOE
gripper. Two Intel RealSense D435i RGB-D cameras are used to obtain
the views of parts and human in the workspace. The open source
project MediaPipe [30] is used to perform human’s arm positioning
and tracking. Together with the input tasks, the proposed DCS-MCA
planning algorithm plans the optimal trajectories and send it to the
robots’ control computer in real time through the TCP/IP protocol. A
more detailed implementation description can be found in Appendix B.

A comprehensive schematic of the experiment is presented in Fig. 6.
Fig. 11(a) depicts the actual test environment for the experiments,
featuring two static obstacles (highlighted within golden circles) that
necessitate the robot’s navigation through a central channel. The pick
up area is situated at the far-end of the work table, and the assemble
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Fig. 11. Three real scene experiments (in columns) with the DCS-MCA algorithm.
area is at the close end (in red dashed box of Fig. 11(a)). For simplicity,
the left robot’s task is assumed to have higher priority than the right
robot in all three cases.

For the first case, both robots commence within the loading zone,
ready to transport the parts to the assembly area. The tentative path
are drawn in green arrows in Fig. 11(a). As evidenced in Figs. 11(d)
and 11(g), the left robot advances through the central channel first,
followed by the right robot. Upon clearing the critical passage, each
robot proceeds to its designated endpoint. The second scenario involves
the robots moving in opposite directions, as shown in Fig. 11(b).
In Figs. 11(e) and 11(h), the low priority robot (right) waits outside
of the channel, letting the left to go through first. Fig. 11(k) illustrates
that after the left robot reaching its destination, new trajectories are
planned, and it returns back immediately. The final scenario examines
9

the DCS-MCA algorithm’s dynamic responsiveness within a human–
robot collaboration context. Fig. 11(c) illustrates a human worker
positioned in the close-end working area, with two robots tasked with
delivering parts to this individual. As depicted in Fig. 11(f), the algo-
rithm swiftly devises an alternative route when the human obstructs
the lower spaces of the central channel, demonstrating the system’s
capability to adapt to dynamic obstacles. (For a comparative visual
analysis, see Fig. 11(d)). Subsequently, Fig. 11(i) captures a moment
after the left robot has navigated past the obstruction, at which point
the human operator shifts their hand, impeding the right robot’s newly
calculated trajectory as shown in Fig. 11(f). This prompts the right
robot to replan its trajectory to circumvent a potential collision, a
process detailed in Fig. 11(l). (Refer to Fig. 11(j) for a comparative
visual illustration).
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Fig. 12. Failed case visualization.

The above experiments test some typical cases in the collaboration
process. The system is able to plan the collision-free dual robots tra-
jectories autonomously. When the human collaborator interferes in,
it can also immediately replan the new obstacle avoidance trajecto-
ries. The results demonstrate the ability of the proposed algorithm
can avoid robot–robot collisions and human–robot collisions in the
shared workspace production activities. For a comprehensive under-
standing of the system’s capabilities and dynamics, please refer to the
accompanying video documentation.

5. Discussion

Highlights of this paper include formulating the original problem
into a batch of DPP problems while maintaining the large search
domain. Benefit from the mature convex optimization solvers, the
DCS methods can generate the result fast. The algorithm efficiency
comparison experiments reveals that for the task of generating single
collision-free path, the solution speed and solution optimality of the
DCS algorithm are competitive with several existing common trajectory
planning algorithms. As for the overall dual-robots collaborative task,
the proposed DCS-MCA algorithm tends to have better optimality than
some existing methods.

The limitations and possible improvements of the DCS-MCA algo-
rithm are as follows. First, although the nature of the convex problem
guarantees the result is optimal under the given constraints, approx-
imating the non-convex constraints to convex one may lose search
domain and thus get stuck into the local minimum. In some cases, the
algorithm even obtains an infeasible result. For example, Fig. 12(a)
shows a failed cases example in the task 1 of Section 4.2.2. The feasible
boundary is plotted in red plane and the reference path is plotted
in blue solid line. In such situation, the algorithm plans the path on
two sides (See two red dotted line in Fig. 12(a)). But on the left
side, there is an additional obstacle in the space that make the new
trajectory in this direction infeasible. And the trajectory on the right
side will be exceeded the feasible boundary of the working area, which
turn out to be infeasible as well. Therefore, the algorithm failed to
plan the path. Additional strategies may be adopted to prevent the
failure in those cases. (1) The algorithm can be called recursively,
that the trajectories with collisions in the first call can be used as
the reference path (the red dotted line in Fig. 12(b)) in the second
call. The algorithm would generate a feasible path (shown in green
solid line in Fig. 12(b)). (2) GCS [20] can be used as an alternative
for such infeasible situations. GCS has a wider search space to obtain
the near-global optimal solution under the obstacle constraints. It can
find the optimal solution for single-robot. Later the step 3 of the DCS
algorithm requires multiple solution trajectories from each robot, as
merely two optimal single-robot trajectories are not conducive for dual-
robot collaborative planning. Therefore, GCS can be only used as a
backup solution to overcome infeasibility of the DCS algorithm. It
cannot replace the single-robot planning step in the pipeline.
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Second, the solving speed is not fast enough to meet the ISO
10218 [31] standard for collaborative robots. Although the DCS al-
gorithm enables the solving process to be about 200 ms, the two-step
spatial and temporal optimization are still time-consuming. In addition,
to reduce the negative effects brought by the convex approximation,
the proposed algorithm needs to consider a batch of possible solution
candidates, which also slows down the algorithm. Unified one-step
spatial and temporal convex optimization method may be developed
in the future to accelerate the solving speed, making the algorithm
capable in more dynamic and variant situations. Some obstacle motion
predictor such as [32] can be applied to reduce the probability to replan
the trajectory on the way. As a conclusion, the proposed method is cur-
rently applicable to some general moderate human–robot collaborative
scenarios.

6. Conclusions

In this paper, an innovative convex-optimization based human-
dual robots collaborative trajectory generating algorithm is proposed
for industrial applications. The algorithm ensures collision avoidance
property and time optimal property in the moderate dynamic environ-
ments. To formulate the naturally non-convex problem into a convex
problem, the DCS algorithm optimizes the path and corresponding time
series in two consecutive steps. In the first step DCS, a DPP problem
was established to plan the collision-free path to the static obstacles
(equipment, human arms). Some techniques are used to improve the
generated path quality and solving speed. In the second step, another
optimization problem is established to adjust the time series of the
low priority robots. The best trajectory pairs are chosen from various
candidates combinations obtained from the DCS. The overall pipeline of
the method is called DCS-MCA. Simulation and real experiments show
the effectiveness of the DCS method for single-robot collision avoidance
trajectory planning and DCS-MCA method for dual-robot collaborative
trajectory planning. The performance comparison experiments further
show the advantages of the proposed method.
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Fig. 13. The structure of our robot control framework.

Appendix A. Details in algorithm efficiency comparison

In this appendix, the test case generation method and implementa-
tion details of four compared algorithms in Section 4.2.2 are reported.

Test case generation. First, four positions in the pick-up area and
four positions in the assemble area are chosen. For each test case, one
point from pick-up area and one from assemble area are randomly
sampled as the start and target, with 50% probability to swap the
moving direction. Also, the priority sampled from Uniform[1, 2] is
assigned to each case. Then, the obstacles are generated. In each test
case, 1, 2, 3 obstacles are generated with 40%, 40%, 20% probability
respectively. Each obstacle is randomly distributed in the workspace,
and radius is sampled from Uniform[0.04𝑚, 0.19𝑚]. Finally, 80 tasks
are collected as the dual-robot test set. Meanwhile, each dual-robot
test case is split into two single-robot test case, forming 160 cases for
single-robot path generation.

Implementation details of RRT-star. The RRT-star algorithm [7]
is implemented by [33]. The hyper-parameter settings are listed below:
The search space size is a cube centered in the workspace with side
length 2 m. The steering step is 0.04 m. The maximum number of
samples before timeout is 3072. The number of nearby branches to
rewire is 32. The probability of checking the end of the connection is
set to 0.1.

Implementation details of GMM/GMR. The GMM/GMR algorithm
in [29] is implemented by the authors. The Gaussian Mixture Model
is implemented by [34]. The FFO algorithm is implemented in this
algorithm. 𝑇 = 10 initial trajectories are generated for each historical
path with Gaussian(0, 0.02) noise. The GMM has 𝑛𝑢𝑚_𝑔𝑚𝑚 = 10
Gaussian kernels. In the FFO algorithm, hyper-parameters 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
10, 𝑚𝑎𝑥_𝑔𝑒𝑛 = 10 are set. 𝑥_𝑖𝑛𝑖𝑡, 𝑦_𝑖𝑛𝑖𝑡 are sampled from Gaussian(0,
0.005).

Implementation details of GCS. The GCS is implemented by [35].
The testing program uses the 𝐿𝑖𝑛𝑒𝑎𝑟𝐺𝐶𝑆 class with the suggested
Mosek [36] solver. In order to facilitate the construction of constraint
space, obstacles are reduced to external cubes of spheres.

Implementation details of Kyrarini’s method. The Kyrarini’s
method [2] is implemented by the authors. The Gaussian Mixture
Model is modified from [34] to adapt the algorithm described in the
paper. 32 human demonstrations are generated and augment them with
Gaussian noise Gaussian(0, 0.02) to form total of 𝐷 = 160 trajectories.
The GMM has 𝑛𝑢𝑚_𝑔𝑚𝑚 = 12 Gaussian kernels. In addition, in all
experiments, the end-effector posture is set to be vertically downward.

Appendix B. Details in implementing real scene experiment

The overall control framework in the real scene experiment is shown
in Fig. 13. The Main Control Server (implemented in Python) solves for
trajectories and sends the step-by-step movement instructions directly
to the Robot Controller Client by the interface designed by the authors.
The Robot Controller Client directly execute the instructions to control
the KUKA Robot with the built-in connectivity servo motion library.
After each movement, the robot will also send the current position back
to the main control server. This ensures that the robot moves exactly
according to the expected trajectory on time.

To ensure the operation stability, we traverse the operability of
the working configuration in the motion space through the whole
11
trajectory, and a certain safe distance can be maintained to avoid
singular configuration. In the experiments, the working configuration
and workspace have high operability, which can avoid the risk of
singular problems.

In addition, we adopt measures such as joint speed inspection and
end effector deceleration to ensure kinematic correctness. If the joint
speed exceeds the limit, the main control server calculates the path
point of the next joint after deceleration based on time interval and
joint velocity limit. Finally, the corresponding end effector pose is
obtained based on forward kinematics, which is sent to the robot
controller.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rcim.2024.102850.
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