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Abstract— In dynamic environments, robots often encounter
constrained movement trajectories when manipulating objects
with specific properties, such as doors. Therefore, applying
the appropriate force is crucial to prevent damage to both
the robots and the objects. However, current vision-guided
robot state generation methods often falter in this regard, as
they lack the integration of tactile perception. To tackle this
issue, this paper introduces a novel state diffusion framework
termed SafeDiff. It generates a prospective state sequence
from the current robot state and visual context observation
while incorporating real-time tactile feedback to refine the
sequence. As far as we know, this is the first study specifically
focused on ensuring force safety in robotic manipulation. It
significantly enhances the rationality of state planning, and
the safe action trajectory is derived from inverse dynamics
based on this refined planning. In practice, unlike previous
approaches that concatenate visual and tactile data to generate
future robot state sequences, our method employs tactile data
as a calibration signal to adjust the robot’s state within the
state space implicitly. Additionally, we’ve developed a large-
scale simulation dataset called SafeDoorManip50k, offering
extensive multimodal data to train and evaluate the proposed
method. Extensive experiments show that our visual-tactile
model substantially mitigates the risk of harmful forces in the
door opening, across both simulated and real-world settings.

I. INTRODUCTION

Vision-guided robotic manipulation [2], [3], [7], [13], [14],
[22], which involves generating a feasible motion trajectory
solely from visual information to carry out specific manip-
ulation tasks, has become increasingly prevalent in the field
of robotics and embodied AI. By leveraging visual inputs to
perceive and interpret the environment, this approach allows
robots to plan and execute intricate movements. However,
current research predominantly emphasizes the success rate
of these manipulation tasks, often neglecting the critical
factor of how much force the robot should apply during
the process. In practice, the inappropriate force exerted not
only risks damaging the manipulated object but also puts
unnecessary strain on the robot’s joints. Hence, addressing
this issue is essential, and we refer to this consideration as
ensuring force safety.

From the perspective of state planning, inappropriate force
mainly arises when the generated state fails to meet the spe-
cific physical properties of the manipulated object. Taking the
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Fig. 1: The restoring force exerted by the robot’s end-effector
can be decomposed into three components: Fx, Fy , and
Fz . The component Fz is tangent with the door’s opening
trajectory and is termed the effective force. The forces lying
in the xOy plane are orthogonal to the trajectory. These
forces might cause damage to both the robot and the door
and are therefore referred to as harmful forces.

door-opening task shown in Fig. 1 as an example, the door
can only move along the arc-shaped trajectory determined
by its physical properties, such as size, opening angle, and
its position relative to the robot. This indicates that all states
of the robot’s end-effector, generated by the state planning
model, must strictly adhere to this arc-shaped trajectory to
ensure force safety. Otherwise, the robot controller might
exert harmful forces in an attempt to reach states outside
this trajectory, which could result in damage to both the door
and the robot. To be brief, we define the state that lies on
this arc-shaped trajectory as safe state, while those outside
are deemed unsafe. In this paper, our primary focus is on
planning safe states to ensure force safety throughout the
robotic manipulation process.

An intuitive solution for the above safe door-opening state
planning can be found in bionics: when opening the door,
humans estimate future door-opening states based on the
door’s physical properties—such as size, opening angle, and
so forth—using visual perception, and then modify them in
real-time based on the forces sensed through tactile feedback
during the actual door-opening process. Inspired by this,
we aim to dynamically integrate real-time tactile feedback
to refine the vision-guided generated states. However, this
solution remains challenging due to the intricate, nonlinear
dynamics between the current force feedback and the re-
finement of future states. These dynamics are influenced by
factors like the robot’s manipulability, positions relative to
the door, and other physical considerations in the real world.

To address such an issue, we develop a diffusion-based



model named SafeDiff to plan safe states, leveraging the
effectiveness of diffusion models in approximating complex
distributions. In this work, we utilize offline demonstrations
collected from the simulator to learn the aforementioned
dynamics of the door opening and embed this knowledge
into the state representation. This allows us to perform
implicit calibration on vision-guided states online, utilizing
real-time tactile feedback obtained during inference. Such a
process enables the generated states to progressively satisfy
the constraints imposed by the door’s properties, thereby
ensuring force safety during the entire door-opening process.

Based on this, our SafeDiff demonstrates strong gener-
alization capabilities and brings several benefits as well.
(1) Robustness to External Disturbances. SafeDiff ex-
cels in handling environmental disturbances online. It can
continuously correct the state changes induced by these
disturbances during the manipulation. It ensures force safety,
effectively adapting to the changing environmental condi-
tions, while other methods often fail to open the door, let
alone maintain force safety. This highlights SafeDiff’s ability
to calibrate its planned state dynamically based on real-
time tactile feedback. (2) Few-shot Sim-to-Real Transfer.
SafeDiff demonstrates exceptional capability in transferring
knowledge from simulation to the real world, even with
limited real-world data. This significantly reduces the need
for extensive real-world training, streamlining the transition
from simulation to practical applications.

The main contributions of this work are three-fold. 1)
We introduce a novel benchmark centered on force safety
during robotic manipulation. This benchmark includes three
physically sound and computationally efficient metrics that
can effectively assess the safety of state planning models. For
the door opening, we create a large-scale safety-related sim-
ulation dataset, SafeDoorManip50k, to validate the effec-
tiveness of the involved models. 2) We propose a diffusion-
based model, SafeDiff, which dynamically incorporates real-
time tactile feedback to calibrate vision-guided robot states
implicitly. 3) Extensive experiments cross both simulated
and real-world settings show that our method outperforms
existing approaches in safe state planning, greatly reducing
the risk of object damage during robotic manipulation.

II. RELATED WORKS

A. Vision-based Robotic Manipulation

Numerous studies on vision-based robotic manipulation
have addressed tasks such as object grasping [7], [14],
articulated object manipulation [13], [22], and object reori-
entation [3]. These works emphasize improving the robot’s
environmental perception through various visual modalities
to enhance task success rates. For instance, [2], [7], [14]
proposed using RGB-only images for robust robotic manipu-
lation, while SAGCI [20], RLAfford [13], and Flowbot3D [9]
rely solely on point clouds for observations. Additionally,
[29], [32] integrated both RGB images and point clouds
to promote the performance on specific manipulation tasks.
However, the objects manipulated by robots are often fragile,

especially articulated ones. In view of this, vision-based ma-
nipulation is challenging to apply in real-world applications
because it cannot accurately reflect the force safety status of
the manipulated objects. Therefore, it is of great significance
for robots to incorporate tactile feedback such that it can
dynamically adjust the planned states and handle objects in
a safer and more controllable manner.

B. Multimodal Tactile Feedback for Enhanced Manipulation

Various learning-based approaches have employed tactile
feedback to enhance robotic manipulation. For instance, [23]
introduced a tactile perception-driven method that enables
robots to learn how to grasp objects without relying on visual
input. Numerous studies focus on grasp stability [4], [6],
[8], as well as regrasping [5], [25]. A few methods [15],
[26]–[28] combine reinforcement learning with tactile feed-
back to formulate manipulation strategies. And very few
approaches leverage the combined benefits of both vision
and touch. For example, [10] integrated prior knowledge
with dynamic model adaptation to locally compensate for
changing dynamics, while [16] developed a self-supervised
learning framework that fuses visual and tactile inputs for
peg insertion, improving learning efficiency. However, the
majority of these works used tactile feedback to improve
manipulation effectiveness rather than to guide safe planning.

C. Datasets for Door Opening

In recent years, a primary approach for door manipulation
tasks has been to build simulation environments that emulate
real-world conditions. Studies such as [9], [11], [12], [21],
[30], [32], [33] have introduced a variety of simulated door-
opening mechanisms, including pushing, pulling, and even
those involving latching mechanisms. Moreover, datasets like
PartNet-Mobility [31] and AKB-48 [19] offer diverse collec-
tions of articulated objects, including doors, but their focus
on visual data collection overlooks crucial modalities such as
tactile information, limiting their effectiveness for safe door-
opening states planning. To address these shortcomings, we
developed a comprehensive door manipulation environment
with multi-modal inputs and provided a large-scale door-
opening dataset to support safe manipulation planning.

III. METHODOLOGY

A. Preliminary

We begin by briefly reviewing the diffusion models, a
class of generative models that synthesize data by reversing
a Markovian process where Gaussian noise is progressively
added to data samples. These models consist of two primary
phases: the forward process and the reverse process. In the
forward process, the original data is systematically corrupted,
transitioning from a structured state to pure Gaussian noise
over a predefined number of steps, described by the equation
xt =

√
αtxt−1 +

√
1− αtϵ, where ϵ is Gaussian noise and

αt are variance-preserving coefficients. The reverse process
entails learning to undo the noise addition to recover the
original data from its noisy state. This involves training a



Fig. 2: Our framework takes a noise sequence as input, visual information, current robot state, and its corresponding force
feedback as conditions and outputs the final safe states through T denoising iterations. The architecture consists of an encoder
and a decoder. The encoder is composed of a series of multi-scale Vision-Guided Mapping Modules (VMMs) that integrate
visual data using FiLM [24] and generate state representations initially. The decoder comprises a stack of Tactile-Guided
Calibration Modules (TCMs) which can refine the state representations based on tactile feedback.

neural network to estimate the reverse conditional distribu-
tion p(xt−1|xt), utilizing advanced deep learning techniques.
A typical application of the diffusion model in robotic
manipulation is Decision Diffuser [1], which makes decisions
using a return-conditional diffusion model, allowing policies
to generate behaviors satisfying individual constraints.

B. The Overall Framework

Motivated by the Decision Diffuser [1], the proposed
SafeDiff aims to generate a consistent robot state sequence
S = {Sk}Lk=1 that ensures force safety conditioned on
visual-tactile information experienced during manipulation,
thereby preventing any potential damage to the door. As
shown in Fig. 2, we employ an encoder-decoder architecture
for our diffusion model. Given the visual representation O of
the current scene context, typically obtained from the image
I, and the current robot state R, the initial input to the model
is a set of Gaussian noise N = {Nk}Lk=1 with length L. After
T iterations, the model produces a sequence of L consecutive
robot states S. Notably, we have opted to replace the action
sequence generated in [1] with a sequence of robot states.
This option stems from the fact that, while the door opening
trajectory is predictable, conventional control actions do not
inherently guarantee force safety. Instead, each robot state is
closely correlated with the current state’s potential harmful
force magnitude. Consequently, using robot states facilitates
a more robust and efficient model training when integrating
tactile feedback.

To harness visual and tactile information effectively to
generate safe and reasonable robot states, we first introduce
the Vision-Guided Mapping Module (VMM) to construct the
encoder for our state diffusion model. This module translates
the robot’s current state, denoted as Ŝ, and the visual scene
context O, including the door size and relative position to
the robot, into a comprehensive state space representation.
Although the diffusion model can initially estimate robot
state trajectories based on these visual cues, it falls short of
guaranteeing force safety during the manipulation process.

To tackle this, we further introduce a Tactile-Guided Cali-
bration Module (TCM) to act as the decoder of our model.
Drawing inspiration from human adaptability in responding
to tactile feedback and adjusting actions accordingly, this
module is designed to capture the intricate, nonlinear dynam-
ics between the current force feedback, represented by F,
and the projected residuals of future states. For more details
about the module design, please refer to Sec. III-C.

C. Network Architecture Design

Visual-Guided Mapping Module (VMM) As shown in
Fig. 2, we stack a series of VMMs with different temporal
scales to construct the encoder for our state diffusion model.
In this module, we initially generate the robot state represen-
tation by using visual information and the current robot state.
Firstly, we use a Multi-Layer Perceptron (MLP), followed
by a Resnet block (Res), to extract current scene context
from the input image I and current state Ŝ. And following
FiLM [24], we regard such extracted current scene context
as affine coefficients and map Gaussian noise inputs N into
the initial state representation. Then, a self-attention (Sttn)
and a Resnet block (Res) are used to enhance the temporal
coherence of these state representations:

[α, β] = MLP(I, Ŝ) (1)
S∗ = Res(α ·N+ β) (2)
S∗ = Res(Sttn(S∗)) (3)

where α and β denote the affine coefficients, and S∗ denotes
the state representation with the specific temporal scale in the
corresponding VMM.

Tactile-Guided Calibration Module (TCM) Similar
to the previous module, we utilize a series of TCMs with
different temporal scales to form the decoder for our state
diffusion model. In this module, we calibrate the robot
state representation S∗ to a safer one by introducing tactile
information. Before calibration, we use a combination of
two Res and one Sttn to further enhance the temporal



TABLE I: Quantitative evaluation of our method and existing models on the simulation scenarios from our SafeDoorMa-
nip50k, highlighting the effectiveness of our method in safe state planning. Ours (V) denotes our method utilizing only
visual data as input, while Ours (V+T) incorporates both visual data and tactile calibration. The symbols ✓and ✗ indicate
whether the door manipulated is seen or unseen.

Seen (?) SuR (%) ↑ AHF (N) ↓
Threshold - 5 N Threshold - 10 N Threshold - 15 N

SaR-95 (%) ↑ SaR-80 (%) ↑ SaR-95 (%) ↑ SaR-80 (%) ↑ SaR-95 (%) ↑ SaR-80 (%) ↑

Li et al. [17] ✓ 96.40 7.68 0.10 0.66 6.09 43.12 56.85 94.19

Ours (V) ✓ 99.98 6.27 0.83 7.87 22.41 57.65 66.86 88.26

Ours (V+T) ✓ 99.98 5.00 6.10 25.28 49.25 78.73 78.79 93.00

Li et al. [17] ✗ 95.27 7.51 0.00 0.66 8.82 47.55 58.15 92.76

Ours (V) ✗ 99.78 13.08 0.87 2.57 8.15 21.35 33.44 51.75

Ours (V+T) ✗ 99.33 5.08 5.13 24.90 55.54 79.33 79.87 91.54

coherence of S∗. And then, we extract safety context from
the input force feedback F using a MLP. Essentially, harmful
forces and states errors can be regarded as 2 physical forms
of force insecurity in different spaces (i.e. the former is
in force space and the latter is in state space). Based on
this, we use a cross attention block (Cttn) to map such
extracted safety context into implicit state residual which
can be used to calibrate the initial state trajectory generated
by the encoder.

S∗ = Res(Sttn(Res(S∗))) (4)
S∗ = S∗ + Cttn(S∗,MLP(F)) (5)

IV. DATASET

To overcome the gap in datasets, we establish the first
dataset for ensuring force safety in door opening manipula-
tion planning, named SafeDoorManip50k. Drawing on the
open-source assets detailed in [18], we constructed a diverse
collection of 57 doors, each featuring unique structural
designs and distinct color textures. Notably, due to functional
limitations of the Isaac Gym, x-axis harmful forces are
inaccurate with the original door handle. Consequently, we
made modifications to the collision mesh of the door handle
model, enabling accurate readings of the harmful forces in
the x-axis. These doors were subsequently divided into a set
of 45 seen doors and a set of 12 unseen doors.

In the Isaac Gym simulation environment, we established
an assembly of doors and robots, where the type, size,
and position of the doors, mechanical properties of hinges,
stiffness of robots, as well as the lighting conditions, were
randomized via random strategies in each scene. The label
for the sampled demonstration is derived as follows: the door
handle’s pose in the world coordinate system is accessed
via the simulation engine interface, and upon acquiring this
pose, the ground truth for the current door opening angle
is established by applying the predefined offset between
the robot end-effector’s and the door handle’s coordinate
systems.

We sampled a total of 47, 727 training demonstrations
on the seen-door set and labeled them accordingly. For
testing, employing random strategies akin to those used
during training, we sampled 4, 580 scenarios on the seen-
door set and 4, 438 on the unseen-door set.

V. BENCHMARK

A. Evaluation Metrics

We propose a set of novel evaluation metrics specifically
designed to comprehensively assess the model’s performance
in safe state planning. These metrics address the shortcom-
ings of existing methods for evaluating safe manipulation,
offering a more precise and multifaceted assessment of the
model’s capabilities.

Success Rate (SuR) Following [18], we leverage SuR
to quantify the effectiveness of the state planning model in
robotic manipulation tasks, by calculating the proportion of
test scenarios in which the model can successfully complete
the task out of the total number of test scenarios.

Safety Rate (SaR-95) and Sub-Safety Rate (SaR-80)
Safety Rates are utilized to evaluate the scenario-wise force
safety of the state planning model in robotic manipulation
tasks. A test scenario is considered safely manipulated only
if the harmful forces magnitude ∥Fharmful∥ within the whole
continuous manipulation trajectory remain below a specific
force magnitude threshold f at all times. But it is worth men-
tioning that the force safety of a state planning model only
depends on the state generated by itself, rather than other
states in that manipulation trajectory. Thus, we discretize the
above defined as,

∥Fharmful∥k < f, ∀k ∈ [1, L] (6)

where L denotes the length of states planned by the model.
To eliminate the impact of noise and make the safety
evaluation more robust, we relaxed the above definition to
the following two metrics: relaxed safety and sub-safety.
Concretely, a test scenario can be considered manipulated
by the model in a relaxed safe manner when 95% of its
generated states have the harmful force below f. Therefore,
the safety of the state planning model can be computed as,

SaR-95 =
Numsafe

Numsuccess
(7)

where Numsafe denotes the number of test scenarios which
is manipulated successfully in a relaxed safe manner, and
Numsuccess denotes the total number of test scenarios which
is manipulated successfully. Similarly, a test scenario can be
considered manipulated by the model in a sub-safe manner



when 80% of its generated states have the harmful force
below f. The sub-safety of the state planning model can be
computed as,

SaR-80 =
Numsub-safe

Numsuccess
(8)

where Numsub-safe denotes the number of test scenarios
which is manipulated successfully in a sub-safe manner.

Average Harmful Force (AHF) AHF is applied to eval-
uate the force-wise force safety of the state planning model
in robotic manipulation tasks. It is calculated as the average
harmful force magnitude ∥Fharmful∥ applied throughout the
robot manipulation process across all test scenarios.

B. Simulation Experiments

Implementation Our proposed SafeDiff model is imple-
mented based on the publicly available Decision Diffuser
code base [1]. The training and testing processes are con-
ducted using an NVIDIA A100 Tensor Core GPU. We utilize
the training demonstrations provided by our SafeDoorMa-
nip50k for safe state planning. The training configuration is
as follows: batch size is 256, total training epochs are 500, an
initial learning rate of 10−4 with a decay rate of 0.985, and
the application of an Exponential Moving Average (EMA)
with a decay factor of 0.995. During testing, we evaluate
the performance of the safe state planning models under
4, 580 seen-door scenarios and 4, 438 unseen-door scenarios
in the simulator. Given the scarcity of prior research on door-
opening tasks incorporating both tactile and visual informa-
tion, we compare our method with the transformer-based
multi-modal generator [17]. For fairness and practicality, we
re-implement the latter without its auditory modality.

Quantitative Results In order to accommodate the limita-
tion of our real experiment, the robot used in our simulated
experiment has a fixed base and is stationary. Therefore,
the door is considered successfully opened if its angle only
surpasses 30◦. In addition, we establish 3 levels of force
thresholds (i.e. f = 5N, 10N and 15N) to define SaR-95 and
SaR-80 in order to evaluate the force safety performance of
such involved states planning models more comprehensively.
Tab. I presents the quantitative results of the models in both
the seen-door and unseen-door scenarios discussed earlier.
As shown, our method outperforms the others across nearly
all metrics. This demonstrates that our method effectively
ensures force safety during the robotic manipulation process
and can generalize robustly to unseen scenarios.

Q1: How does tactile calibration help safe state plan-
ning? As tactile calibration plays an essential role in our
method, we conduct an ablation study to validate its impor-
tance by removing the force feedback input from our method.
In the implementation, we directly bypass all operations
associated with Eq. 5 during both the training and inference
phases. As demonstrated in Tab. I, without tactile calibration,
although our method still manages to successfully open
doors, it fails to ensure force safety. More importantly, the ab-
sence of tactile calibration significantly impairs our method’s
generalization capabilities, which indicates that vision-based

Fig. 3: Qualitative comparisons of different methods on
three samples randomly selected from SafeDoorManip50k
unseen-door scenarios with disturbance. Each sub-figure is
annotated with two key indicators: the “blue line” represents
the magnitude of harmful force applied by the robot’s end-
effector, demonstrating the safety of the methods, while the
“red line” shows the door opening angle, illustrating the
effectiveness of the methods. The comparisons include: (a)
Li et al. [17], (b) Our method without tactile calibration, and
(c) Our method with tactile calibration.

state planning methods are inadequate for modeling the
intricate dynamics inherent in robotic manipulation tasks,
rendering them incapable of planning robustly in dynamic,
unstructured environments.

TABLE II: Quantitative evaluation of of different methods
on our SafeDoorManip50k unseen-door scenarios with
disturbance, highlighting the anti-disturbance capability of
our method.

SuR (%) ↑ AHF (N) ↓
Threshold - 20 N

SaR-95 (%) ↑ SaR-80 (%) ↑

Li et al. [17] 3.83 17.92 0.00 7.83

Ours (V) 68.31 18.37 0.62 45.10

Ours (V+T) 95.18 9.59 28.25 89.25

Q2: Does SafeDiff still work under environmental
disturbances? The goal of the disturbance experiment is
to observe whether the state planning methods can coun-
teract the environmental disturbances, preventing their ac-
cumulation and ultimately avoiding failure in the robotic
manipulation tasks. In the implementation, we tested the
involved models using 4, 438 unseen-door scenarios from our
SafeDoorManip50k dataset. And during the door-opening
process, we applied a periodic impulsive (1.5Hz) disturbance
with a positional deviation of 0.03 meters. During evaluation,
the force threshold is set to f = 20N, as external distur-
bances typically amplify harmful forces. As shown in Fig. 3,
trajectories generated by our method and [17] demonstrate
that both [17] and our method without tactile calibration
fail to resist the disturbance. This leads to an increasing
accumulation of positional deviations, eventually causing the



robotic gripper to disengage from the door handle. In con-
trast, our method with tactile calibration responds effectively
to the disturbances, maintaining the harmful forces within a
relatively small range, and ultimately succeeding in opening
the door. Moreover, the quantitative results in Tab. II further
confirm that our method can effectively resist disturbances
in real time.

C. Real-world Experiments

Implementation In the real-world experiments, we con-
structed three doors with varying colors and radii. One of
these doors was utilized for the collection of training data
(referred to as the “seen” door), while the remaining two
were used for unseen tests. Some door samples are shown
in Fig. 4. We deployed our state planning model on the
KUKA iiwa14 robot. For input of observation, we obtain
visual data from an Intel RealSense D435i camera and force
feedback from the robot’s interior sensors. Concurrently, we
developed a simulated environment within Isaac Gym that
closely mirrors the actual environment to gather simulation-
augmented data for sim2real experiments. The data collection
strategies and labeling methods employed in this experiment
were broadly consistent with those used in the simulation.
Ultimately, we collected 110 real-world demonstrations and
700 simulation demonstrations.

Q1: Can SafeDiff be adapted for real-world robotic
manipulation tasks through few-shot fine-tuning? In
this experiment, we initially train our model using 700
sampled simulation demonstrations (denoted as Sim), and
subsequently fine-tune it with only 20 percent of the 110
real-world demonstrations (denoted as Real (20%)). Fig. 4
demonstrates that our method effectively ensures force safety,
even with few-shot fine-tuning.

Q2: How does the generalization performance of
SafeDiff in real-world robotic manipulation tasks through
few-shot fine-tuning? We continue to employ the few-shot
fine-tuned model as the controller for the robot. We then
ask the robot to open doors that are unseen during the fine-
tuning process. Fig. 4 demonstrates that our method exhibits
robust generalization capabilities in real-world robotic ma-
nipulations.

Q3: Does SafeDiff still work under real-world envi-
ronmental disturbances through few-shot fine-tuning?
We continue to employ the previously trained model as
the robot’s controller. However, unlike in the above exper-
iment, we manually introduce external disturbances during
the door-opening process. From Fig. 4, it is evident that
our method can effectively calibrate real-world disturbances
online, maintaining the harmful force at a low level.

VI. CONCLUSIONS

In this work, we introduce a novel benchmark dedicated
to ensuring force safety in robotic manipulation, focusing
specifically on manipulation tasks where the robot’s motion
trajectory is constrained by the physical properties of the
manipulated objects, such as door-opening. Drawing inspi-
ration from bionics, we developed a diffusion-based model

Fig. 4: Qualitative results of our method in real-world
scenarios. Each row corresponds to a specific door-opening
task: The first row evaluates the effectiveness of our few-shot
fine-tuning model in real-world settings (relevant to Q1), the
second row assesses the model’s generalization capabilities
(relevant to Q2), and the third row examines the model’s
resistance to disturbances (relevant to Q3). Additionally, the
first three columns in each row capture two samples from
the door-opening process, while the final column quantifies
the magnitude of harmful force encountered throughout the
entire door-opening. Zoom in 10 times for the better view.

named SafeDiff, which adeptly integrates real-time tactile
feedback to adjust vision-guided planned states, significantly
reducing the risk of damage. Additionally, we present the
SafeDoorManip50k dataset, a pioneering resource that pro-
vides a large-scale multimodal environment tailored for safe
manipulation. This dataset focuses on the collection of force
feedback during robotic manipulation in simulation settings,
offering valuable insights that can inspire subsequent tasks.
Our experiments demonstrate the robust performance of
SafeDiff in ensuring safe robotic manipulation.
Limitations. Given the cost of data collection for simula-
tion and real-world experiments, our experiments are solely
conducted on the door-opening task and have not yet been
extended to other manipulation tasks. We only consider a
gripper rather than a dexterous hand to manipulate objects.
However, we hope that our definition of the evaluation met-
ric, data collection scheme, and model design can stimulate
more extensive research in related fields.
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