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A B S T R A C T

The premise of human–robot collaboration is that robots have adaptive trajectory planning strategies in
hybrid work cell. The aim of this paper is to propose a new online collision avoidance trajectory planning
algorithm for moderate dynamic environments to insure human safety when sharing collaborative tasks. The
algorithm contains two parts: trajectory generation and local optimization. Firstly, based on empirical Dirichlet
Process Gaussian Mixture Model (DPGMM) distribution learning, a neural network trajectory planner called
Collaborative Waypoint Planning network (CWP-net) is proposed to generate all key waypoints required for
dynamic obstacle avoidance in joint space according to environmental inputs. These points are used to generate
quintic spline smooth motion trajectories with velocity and acceleration constraints. Secondly, we present an
improved Stochastic Trajectory Optimization for Motion Planning (STOMP) algorithm which locally optimizes
the generated trajectories of CWP-net by constraining the trajectory optimization range and direction through
the DPGMM model. Simulations and real experiments from an industrial use case of human–robot collaboration
in the field of aircraft assembly testing show that the proposed algorithm can smoothly adjust the nominal
path online and effectively avoid collisions during the collaboration.
1. Introduction

In industry, robotic automation ensures efficient and repeatable pro-
duction in manufacturing. However, traditional robots merely follow
entirely stationary tasks and cannot cope with the uncertain changes
in the environment. Human intervention is required to deal with this
uncertainty and variability. With the new demands of the intelligent
manufacturing in Industry 4.0, the use of industrial robots is gradually
shifting from the traditional work that is isolated from humans to a
collaborative work where they share the workspace with their human
colleagues. Combined with the advantages such as cognitive abilities,
flexibility from humans and agility, accuracy, and repeatability from
robots, Human–Robot Collaboration (HRC) is becoming a popular topic
in the robotics research field. Achieving the goal of developing safe
collaborative robots will enlarge the scope for robotic applications and
create greater value in the industrial field. The standard ISO 10218
and the technical specification TS 15066 define the safety requirements
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for collaborative robots [1]. In HRC, collision avoidance is specified
as one of the most important factors in collaborative safety. Today,
the majority of research on HRC is still limited to simulation cases.
Collision avoidance modes in industrial applications are also mainly
implemented by decelerating and braking near the obstacles. Therefore,
research on intelligent collision avoidance strategies for collaborative
robots in dynamic environments still needs to be explored.

Traditionally, offline programming is sufficient to make robots com-
plete a fixed-path task. The most influential path planning algorithms
are sampling-based path planning algorithms including the multi-query
probabilistic roadmap (PRM) [2] and the single-query fast search ran-
dom tree (RRT) [3] algorithms and their variants [4–6]. The sampling-
based algorithms have efficient solving speed in low dimensional prob-
lems, but the computational complexity gradually increases as the
dimensional increases. Meanwhile, the output feasible solution lacks
the control of path quality, and requires subsequent smoothing opti-
mization.
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Unlike sampling-based methods, optimization-based methods obtain
the optimal solutions under the given objective function by exploring
the entire configuration space. The classical optimization-based meth-
ods for motion trajectory planning consists of two different branches:
gradient-based methods and stochastic optimization methods. A well-
known gradient-based method is Covariant Hamiltonian Optimization
for Motion Planning (CHOMP) [7]. CHOMP uses a covariant gradi-
ent descent technique that minimizes the combined cost of trajectory
smoothness and obstacle cost, enabling obstacle avoidance motion
planning for a 6 degree-of-freedom (DOF) robotic arm. A representative
of stochastic optimization methods is Stochastic Trajectory Optimiza-
tion for Motion Planning (STOMP) [8], which updates the trajectory
based on the stochastic gradient estimation generated by noise trajecto-
ries. Stochastic optimization methods overcome the limitation of local
minima and improve the planning efficiency compared to gradient-
based methods. With the continuous development of advanced nu-
merical optimization algorithms, optimization-based algorithms have
also improved significantly in terms of computational efficiency and
global search for optimal solutions. Kim et al. [9] proposed a robot
motion planner using particle swarm optimization (PSO) algorithm that
satisfies multi-objective constraints, and tests on a 3-DOF robot showed
good convergence efficiency. Xidias [10] computed time-optimal trajec-
tories in 3D workspaces by Genetic Algorithm with multiple population.
Recently, Chen et al. [11] solved an optimal trajectory planning prob-
lem with time, energy and jerk as multiple objectives based on an
improved immune clone selection algorithm. The generated trajectories
perform well, but the planner does not have obstacle avoidance capabil-
ity due to the lack of obstacle constraints. In general, the optimization-
based methods described above facilitate the generation of cost-saving
and task-fitting ideal trajectories by defining appropriate cost functions
and various types of constraints in motion. However, a major drawback
of such methods is the high computational burden, which makes it chal-
lenging to apply to dynamic scenarios with variable initial conditions
and complex task constraints.

For dynamic trajectory planning in HRC scenarios, various algo-
rithms that improve human safety and planning efficiency have been
developed recently. Due to the simple structure and good real-time
performance, the artificial potential field (APF) method [12] becomes
one of the commonly used real-time obstacle avoidance algorithms.
Liu et al. [13] established APF from online estimated human hand
velocities and determined collision avoidance directions based on the
control law. Safeea et al. [14] proposed a repulsive vector shaping
method for APF, capable of modifying the original nominal paths in
collaborative tasks online to avoid collision. However, APF methods
have the disadvantage of being susceptible to local minima regions
and possible uncertainties in the newly generated trajectories when the
repulsive and gravitational forces are similar.

There are also studies that improve optimization-based methods for
dynamic environments. Incremental Trajectory Optimization for Mo-
tion Planning (ITOMP) [15], which alternates planning and execution
steps based on STOMP, has the capability of real-time motion plan-
ning. Oguz et al. [16] proposed a stochastic optimization framework
supported by updated parameterization and human motion prediction
for HRC trajectory planning. The above single-step incremental tra-
jectory generation method has good dynamic performance, but the
speed and acceleration trajectory quality during continuous motion
need to be optimized due to the absence of a forward-looking trajectory
smoothing method. In contrast, Kim et al. [17] proposed an online near
time-optimal trajectory planning method based on path constrained
time-optimal motion. The dynamic trajectory generation time is close
to optimal and the trajectory transitions are smooth. However, the
authors focus on the generation of continuous trajectories, and the
way to obtain the key path points for obstacle avoidance specified by
higher-order commands is not given. Similarly, polynomial functions
proposed by [18] for online collision avoidance trajectory also has
2

smooth transitions.
Recently, more and more researches have focused on introducing
machine learning techniques into HRC for improving dynamic per-
formance and adapting to complex tasks. Mainprice et al. [19] used
inverse optimal control to learn sample trajectories of human motion,
and the prediction of human actions were used for subsequent STOMP-
based trajectory planning. The stochastic optimization process of Oguz
et al. [16] is also based on a Probabilistic Movement Primitive (ProMP)
model for human motion prediction implemented in the offline train-
ing. Such methods plan robot trajectories based on model prediction
results by learning human motion guidelines. However, this strategy
is somewhat influenced by the dynamic habits of human collaborators
and the degree of response to robot motion. In contrast, another
learning-based scheme is to learn the robot’s obstacle avoidance strate-
gies under different obstacles, with no motion criterion requirement for
humans, such as [20]. This way of adapting the robot to the human can
make the collaborator more comfortable and natural.

Due to the low time complexity and superior nonlinear fitting per-
formance, neural network-based motion planning research is a recent
hot direction in this field. Meziane et al. [20] used supervised learning
of a two-layer neural network to generate path points for dynamic
obstacle avoidance of collaborative robots. Their algorithm plans in
Cartesian space, which is only applicable to motion planning of end-
effectors and does not guarantee that the robot links do not create
collision with humans. Qureshi et al. [21] proposed a motion planning
network (MPnet) that inputs environmental information and generates
single-step path points connecting the initial and target configurations
of the robot. Bency et al. [22] used a recurrent neural network to
output configuration space path points step-by-step, but the network
has no input of environmental information. Ichter et al. [23] proposed
a method for learning the sampling distribution of a Sampling-based
motion planner (SBP) using a conditional variational autoencoder.
Duguleana et al. [24] developed a dual neural network based obstacle
avoidance network that uses Q-learning to iteratively update the neural
network weights. However, there is a reset process for the network
weights, which is risky when performing dynamic tasks. The network
structure of the above methods determines that only a single path point
or discrete informed samples can be generated in each cycle of path
planning. The motion pattern of the robot is single step incremental.
The path cost and trajectory smoothness of such methods in dynamic
environments cannot be planned uniformly.

To the best of the authors’ knowledge, our study differs from
existing studies in the following ways.

(𝑖) In this paper, we propose CWP-net, a neural network joint trajec-
tory planner based on empirical DPGMM distribution. Unlike common
neural network algorithms with single-step incremental output, CWP-
net is able to generate all subsequent critical obstacle avoidance path
points in joint space in a single step based on environmental in-
formation. Simultaneously, the entire motion trajectory is optimized
based on joint angle, angular velocity and angular acceleration con-
straints. While ensuring the continuity of velocity and acceleration, it
reduces the impact of acceleration on the robot joints and improves the
smoothness of the trajectory.

(𝑖𝑖) This paper proposes an improved STOMP trajectory optimiza-
tion algorithm for the local optimization of the trajectory generated
by CWP-net. The algorithm is based on the solved empirical DPGMM
distribution parameters constraining the stochastic optimization range
and direction of joint trajectories. It converges to the ideal optimization
range faster than the STOMP algorithm using fixed range stochastic
exploration, further improving the efficiency of the algorithm.

(𝑖𝑖𝑖) Overall, the safe trajectory generation algorithm proposed in
this paper combines the offline path of the robot with online collision
avoidance trajectory replanning. It can modify the default task path
online based on dynamic obstacle information to generate smooth
collision-free trajectories, which is suitable for similar industrial col-

laboration scenarios.
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Fig. 1. Representation of HRC scenarios.

More specifically, the CWP-net-based planner has an excellent real-
time performance and is suitable for online trajectory generation in
dynamic environments. However, currently our improved STOMP de-
signed for ensuring the completeness and safety of the online trajectory
planning framework is only applicable to moderate low speed HRC
scenarios. Computational efficiency improvements will be made in the
future with reference to [15,16].

The rest of the paper is organized as follows. In Section 2, the
HRC scenario of the proposed approach is described, modeling the
workspace for collaborative tasks. Section 3 introduces the proposed
deep neural network motion planner CWP-net, and the process of
solving the DPGMM distribution model for the training data. Section 4
presents the online trajectory planning algorithm proposed in this
paper and proposes an improved STOMP motion optimization algo-
rithm. Then, in Section 5, simulations and real experiments on obstacle
avoidance during HRC of an industrial use case are designed, and the
performance of the method in this paper is discussed and analyzed.
Finally, Section 6 concludes the paper.

2. HRC scenario modeling

The method proposed in this paper is applicable to solve the dy-
namic collision avoidance problem similar to HRC scenario illustrated
in Fig. 1. The robot workspace is 𝑟𝑜𝑏𝑜𝑡 ⊂ R3 and the human workspace
is ℎ𝑢𝑚𝑎𝑛 ⊂ R3. The shared workspace 𝑠ℎ𝑎𝑟𝑒 ⊂ R3 is a subset of the inter-
section of the robot workspace and the human workspace. In the shared
workspace, the robot needs to plan its task motion trajectory online
while not interfering with humans. 𝑠ℎ𝑎𝑟𝑒 is determined according to
the work task and is defined as a cubic space with dimensions 𝐿×𝐿×𝐿.
The human arm in the collaboration is modeled as an envelope cylinder
with a radius of 0.06 m. The arm position and pose are represented by
the envelope geometry features. Arm localization can be achieved by
sensors such as cameras, IMUs, lasers and magnetic trackers [14,20].

Since human motion is dynamic and uncertain, collision-free path
planning must be done in real time. Therefore, we adopt a discretization
space approach [20,25] to characterize the state of the HRC environ-
ment, as shown in Fig. 1. In the collaboration process, 𝑠ℎ𝑎𝑟𝑒 contains
the obstacle space 𝑜𝑏𝑠 formed by the human arm, and the robot free
movable space 𝑓𝑟𝑒𝑒 = 𝑠ℎ𝑎𝑟𝑒 − 𝑜𝑏𝑠. The discrete resolution of the
workspace determines the characterization accuracy of 𝑜𝑏𝑠. The larger
the shared workspace dimensions, the higher the discrete resolution
required to achieve the specified obstacle characterization accuracy.
Typically, the resolution 𝐷×𝐷×𝐷 for the workspace is usually manually
set by the researchers, so there is no existing standard to refer to. In
3

Fig. 2. The required reference discrete resolution 𝐷 according to the edge length of
the shared workspace 𝐿 and the error increment of the modeling radius to be limited
𝑅𝑖. (The colormap is obtained by interpolating the blue scattered data in the figure).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
The polynomial parameters of Eq. (1).
𝑝00 𝑝01 𝑝10 𝑝11 𝑝20 𝑝21
8.235 74.7 −400.1 −943.6 4705 4707

𝑝30 𝑝31 𝑝40 𝑝41 𝑝50
−22580 −10350 48190 8355 −37910

this paper, we propose a uniform sampling-based empirical formula to
determine the proper discrete resolution 𝐷, as shown in Fig. 2. This
empirical formula (Eq. (1)) measures the reference discrete resolution
𝐷 under the given parameters, i.e., the edge length of the shared
workspace 𝐿 and the expected increment of the modeled cylindrical
size of the arm envelope over the actual radius 𝑅𝑖. More details can be
found in Appendix A.

𝐷
(

𝑅𝑖, 𝐿
)

=
[

1, 𝑅𝑖, 𝑅
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𝑖
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𝑝50

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)

where 𝑅𝑖 is the increment of cylindrical envelope radius over the
actual radius. 𝐿 is the edge length of the shared workspace. 𝐷(𝑅𝑖, 𝐿)
is the value of required discrete resolution under given 𝑅𝑖 and 𝐿. The
polynomial parameters 𝑝 can be found in Table 1. Taking 𝑅𝑖 of 0.12 m
and 𝐿 of 0.55 m as an example, 𝐷(𝑅𝑖, 𝐿) can be calculated as 5.2092 by
Eq. (1). Therefore, we choose 𝐷 = 5 and set the resolution as 5 × 5 × 5.

Since the value of spatial discrete resolution directly affects the
structure of our proposed neural network below, the selection of reso-
lution requires a trade-off between collision avoidance accuracy, com-
putation time, and neural network complexity. Therefore, the number
of discrete in the range of discrete reference lines should be chosen
as small as possible under the condition that the specified collision
avoidance distance is satisfied. In addition, the empirical Eq. (1) is only
for fitting the distribution near the sample data, and is not applicable
beyond the range of Fig. 2, or if 𝑅𝑖 is chosen too small.

According to the discrete value D determined by Eq. (1), 𝑠ℎ𝑎𝑟𝑒 is
discretized into 𝐷 ×𝐷 ×𝐷 subspaces. For each subspace, the subspace
occupied by obstacles is represented by the value ‘‘1’’, and the rest
of the subspaces are represented by ‘‘0’’. After flattening the three-
dimensional space into a one-dimensional vector, the state of the shared
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Fig. 3. A 7-DOF articulated manipulator and its link model.

workspace at any moment can be represented by a one-dimensional
vector of 𝐷3 elements, 𝑰𝑜𝑏𝑠 =

[

𝑖1, 𝑖2,… , 𝑖𝐷3
]

.

3. DPGMM-based CWP-net

3.1. Off-line trajectory experience learning

In this section, we propose a modeling method for the point distribu-
tion of HRC joint obstacle avoidance paths based on the DPGMM [26].
By adaptive learning of historical task paths and obstacle avoidance
paths generated from simulations of different obstacle distribution,
starting configurations and target configurations, information on the
joint angle distribution of different obstacle avoidance path is ex-
tracted. This distribution model is used as the training label for the
deep neural network path planner in the later part of the paper.

Our HRC system uses the KUKA LBR iiwa 14 robot, a 7-DOF
redundant collaborative robot. As shown in Fig. 3, the robot’s obstacle
avoidance action is determined only by the postures of Link 1, 2, and 3.
Therefore, the seventh rotational joint at the end of the kinematic chain
is considered as a redundant joint. We only consider the angles of the
1st to 6th joints in the learning part. As for the motion planning for 7th
joint, there is no need to constrain the intermediate waypoints, which
can be directly interpolated by the initial and target configurations.
Specifically, according to the decisive joints that control the orientation
of each link, three DPGMMs are used to model the distributions of
(

𝜃1, 𝜃2
)

,
(

𝜃3, 𝜃4
)

and
(

𝜃5, 𝜃6
)

, respectively, and encode the configura-
tion space of the empirical path into a finite number of known Gaussian
parameters.

The nonparametric DPGMM [26], also known as infinite Gaussian
Mixture Model, is an extended form of the finite Gaussian Mixture
Model when the number of submodels tends to infinity. It can calculate
the number of effective submodels adaptively based on the data, thus
avoiding the problem of insufficient model accuracy or overfitting. The
DPGMM distribution model building process for obstacle avoidance
trajectory experience is expressed as

𝝅 |𝛼 ∼ 𝐷𝑖𝑟 (𝛼)
𝝁𝑘,𝜮𝑘

|

|

𝝁0,𝜮0, 𝜅0, 𝜐0 ∼ 𝑁𝑊
(

𝝁0,𝜮0, 𝜅0, 𝜐0
)

𝑧𝑖 |𝝅 ∼ 𝑀𝑢𝑙𝑡 (𝝅)
𝑥𝑖 ||𝑧𝑖,𝝁𝑘,𝜮𝑘 ∼ 

(

𝝁𝑧𝑖 ,𝜮𝑧𝑖

)

(2)

where 𝛼 is the concentration parameter of the model. The Dirichlet
prior distribution of the probability parameter 𝜋 is obtained from
𝐷𝑖𝑟 (𝛼), which can be constructed using 𝐺𝐸𝑀 (𝛼) (stick-breaking). The
prior distribution of the submodel mean parameter 𝝁𝑘 and the covari-
ance parameter 𝜮𝑘 is the Gaussian-Wishart distribution with param-
eters 𝝁0,𝜮0, 𝜅0, 𝜐0, denoted by 𝑁𝑊

(

𝝁0,𝜮0, 𝜅0, 𝜐0
)

. 𝑀𝑢𝑙𝑡 (𝝅) indicates
that the random indicator variable 𝑧𝑖 obeys a multinomial distribution
with probability parameter 𝝅. The final representation by 𝑧𝑖 = 𝑘
indicates that the 𝑖th data 𝑥𝑖 belongs to the 𝑘th Gaussian mixture
submodel.
4

The robot configuration space (C-space) is denoted as  ⊂ R𝑑 (𝑑
is the C-space dimension), which contains the obstacle space 𝑜𝑏𝑠 and
𝑓𝑟𝑒𝑒 =  − 𝑜𝑏𝑠. Given an obstacle 𝑜𝑏𝑠, a robot collaborative task
starting configuration 𝒄0 and a target configuration 𝒄𝑡, a discrete path
sequence 𝝃 =

[

𝒄0, 𝒄1,… , 𝒄𝑡
]

is obtained by planning in 𝑓𝑟𝑒𝑒. The path is
capable of achieving task path connectivity under the condition of com-
plete obstacle avoidance. The number of discrete path points 𝑡 needs to
be chosen according to the length and complexity of the collision-free
path, and the Douglas–Peucker algorithm [27] is used to compress the
number of discrete trajectory points of each joint in C-space, and try to
choose a smaller 𝑡 under the condition of conforming to the trajectory
morphology. According to different state configurations, 𝑁 sample path
data 𝝃𝑖 =

[

𝒄𝑖0, 𝒄
𝑖
1,… , 𝒄𝑖𝑡

]

for  𝑖
𝑜𝑏𝑠, 𝒄

𝑖
0, 𝒄

𝑖
𝑡, 𝑖 = 1, 2,… , 𝑁 can be obtained.

According to the spatial postures of robot links, path data in C-
space are dimensionally reduced and split into three parts, 𝝍1 =
[(𝜃1, 𝜃2)0, (𝜃1, 𝜃2)1,… , (𝜃1, 𝜃2)𝑡], 𝝍2 = [(𝜃3, 𝜃4)0, (𝜃3, 𝜃4)1,… , (𝜃3, 𝜃4)𝑡],
and 𝝍3 = [(𝜃5, 𝜃6)0, (𝜃5, 𝜃6)1,… , (𝜃5, 𝜃6)𝑡]. Based on 𝝍1, 𝝍2 and 𝝍3, the
spatial pose distribution models of the sample paths of links 1, 2 and
3 are modeled by Eq. (2), respectively. The EM algorithm [28] is used
to solve the DPGMM model parameters, and the obtained distribution
model 𝛬𝑚

𝑘𝑚
is expressed as

{

𝛬𝑚
𝑘𝑚

∶ 𝝁𝑘𝑚 ,𝜮𝑘𝑚

}

= 𝐷𝑃𝐺𝑀𝑀
(

𝝍𝑚
)

,

𝑘𝑚 = 1, 2,… , 𝑁𝑘𝑚 ;𝑚 = 1, 2, 3
(3)

where 𝑚 is denoted as the link label, 𝑘𝑚 denotes the 𝑘𝑚 submodel of
link 𝑚, and the total number of submodels is 𝑁𝑘𝑚 . 𝝁𝑘𝑚 and 𝜮𝑘𝑚 are the
submodel Gaussian distribution parameters.

Based on the distribution model, any combination of these three
link attitudes can form a specific robot configuration, denoted as
{

𝛬𝑚
𝑖 , 𝛬

𝑚
𝑗 , 𝛬

𝑚
𝑘

}

, 𝑖 = 1, 2,… , 𝑁𝑘1 , 𝑗 = 1, 2,… , 𝑁𝑘2 ,𝑘 = 1, 2,… , 𝑁𝑘3 .
Therefore, a total of 𝑁𝑘1 ×𝑁𝑘2 ×𝑁3 different robot configurations can
be created, as shown in the Encoding section in Fig. 4. The sample
discrete path sequence can be expressed as 𝝃𝑖 =

[

𝒄𝑖0, 𝒄
𝑖
1,… , 𝒄𝑖𝑡

]

=
[

𝑙𝑖0, 𝑙
𝑖
1,… , 𝑙𝑖𝑡

]

, 𝑖 = 1, 2,… , 𝑁 , where 𝑙𝑖𝑡 denotes the configuration label
of the path point at moment 𝑡 of the 𝑖𝑡ℎ path. To facilitate subsequent
network processing, the labels of all paths are formed into 𝑡 + 1 sets
𝑳𝑡 based on the moment 𝑡 to which they belong. Each 𝑳𝑡 is reordered
and normalized according to its own number. Thus, a normalized label
sequence for each sample path is obtained as 𝝃𝑖 =

[

𝑙
𝑖
0, 𝑙

𝑖
1,… , 𝑙

𝑖
𝑡

]

, 𝑖 =
1, 2,… , 𝑁 .

3.2. Neural network model and training

In this section, a feedforward deep neural network is proposed,
called Collaborative Waypoint Planning network (CWP-net) . CWP-net
is able to learn the distribution information of the DPGMM model
established in Section 3.1, and output all the key discrete collision-free
waypoints of the subsequent planned path with the initial configura-
tion, target configuration, and environmental obstacle information as
inputs. The model building and learning process is as follows.

In the designed simulation, training data (containing discrete path
trajectories and environmental obstacle configuration information) are
divided into an input part and an output part for training the neural
network. The form of the input part and output part is shown in the
CWP-net part of Fig. 4. The input of CWP-net is a one-dimensional
vector 𝒙𝑖𝑛 =

{

𝑐0, 𝑐𝑡,
[

𝑰𝑜𝑏𝑠
]}

, containing 𝐷3+2 elements, where the values
of 𝑐0 and 𝑐𝑡 are the corresponding normalized configuration labels 𝑙0
and 𝑙𝑡, 𝑰𝑜𝑏𝑠 =

[

𝑖1, 𝑖2,… , 𝑖𝐷3
]

. The outputs of the CWP-net are the critical
waypoints in each discrete path trajectory as 𝒚𝑜𝑢𝑡 =

{

𝑐1, 𝑐2,… , 𝑐𝑇
}

,
where 𝑇 is determined by the maximum number of discrete trajec-
tory points in the total training data. Depending on the number of
critical waypoints for each data, successive elements starting from 𝑐1
are assigned the corresponding normalized configuration labels, and
subsequent empty elements are assigned a value of ‘‘−1’’. For example,
the output data in Fig. 4, with the number of critical path points being
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Fig. 4. Schematic diagram of the training process and network structure of the proposed neural network motion planner CWP-net.
2

4, corresponds to the sequential sequence label
[

𝑙1, 𝑙2, 𝑙3, 𝑙4
]

, and the
last 𝑇 − 4 bits of the output sequence are filled with ‘‘−1’’.

Referring to the guidelines for rough estimation of hidden neuron
structure provided by Shibata et al. [29], the number of hidden layer
neurons in CWP-net can be initially determined by
{

𝐻𝑚+1 = 𝐻2
𝑚∕𝐻𝑚−1 (1 ≤ 𝑚 ≤ ℎ𝑡 − 2)

𝐻0 = 𝐷3 + 2, 𝐻1 = 2𝐻0∕3, 𝐻ℎ𝑡−1 > 𝐻ℎ𝑡
(4)

where 𝐻0 is the number of neurons in the input layer, 𝐷 is the shared
workspace discrete resolution, and 𝐻ℎ𝑡 is the number of neurons in the
output layer. The number of hidden layers and the number of neurons
in each layer of CWP-net are determined by the recursive formula of
Eq. (4). It should be noted that the computational complexity increases
as the volume of the network increases. The pruning of the network
structure should be further weighed based on factors such as workspace
discrete resolution, path complexity, and training data.

The training process of the network uses a back propagation al-
gorithm based on gradient descent. If the output vector is different
from the desired target, it indicates that the computational result is
wrong. The computed error is back propagated to the hidden layer, and
the response error is continuously minimized by adjusting the network
weight parameters in the training phase. The training objective function
is the Mean Square Error (MSE) loss between the predicted path label
and the target path label, as shown in Eq. (5).

𝐿𝑜𝑠𝑠 = 1
𝑁

𝑀
∑

𝑖

𝑇
∑

𝑗=1

‖

‖

‖

𝑐𝑖,𝑗 − 𝑐𝑖,𝑗
‖

‖

‖

2
(5)

where 𝑐𝑖,𝑗 is the normalized path label predicted by CWP-net and 𝑐𝑖,𝑗
is the normalized target path label. 𝑀 is the number of paths used for
training. 𝑁 is the averaging term.

4. Online trajectory planning

In this section, an online collision avoidance trajectory planning al-
gorithm for dynamic environments is proposed for ensuring HRC safety.
First, the implementation and principles of the algorithm are given in
Section 4.1. Then, for the optimization method used in the algorithm,
an improved STOMP motion optimization algorithm, referred to as
SWOA, is proposed in Section 4.2 for locally optimizing trajectories.
5

4.1. Trajectory planning algorithm

Algorithm 1: Online trajectory planning
input : ◦ 𝑐0 – Start configuration;

◦ 𝑐𝑡 – Goal configuration;
◦ 𝑰𝑜𝑏𝑠 – Obstacle Information;

output: ◦ 𝝓 or 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 – Collision-free trajectory.

1 𝑰𝑜𝑏𝑠 ← Update the workspace state;
2 𝝃 ←CWPnet(𝑐0, 𝑐𝑡, 𝑰𝑜𝑏𝑠);
3 𝝓←Interpolation(𝝃);
4 if IsCF(𝝓, 𝑰𝑜𝑏𝑠) then

// IsCF - IsCollisionFree;
5 Return 𝝓
6 else
7 for 𝑖 ← 0 to size(𝝓)−1 do
8 if IsCF(

[

𝝓𝑖,𝝓𝑖+1
]

, 𝐼𝑜𝑏𝑠) then
9 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 ← 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 ∪

[

𝝓𝑖,𝝓𝑖+1
]

;
10 else
11 𝑗 ← 𝑖 + 1 ;
12 while ∼IsCF(𝝓𝑗 , 𝑰𝑜𝑏𝑠) do
13 𝑗 ← 𝑗 + 1 ;
14 𝝃𝑠𝑡𝑒𝑝 ←CWPnet(𝝓𝑖,𝝓𝑗 , 𝑰𝑜𝑏𝑠);
15 𝝓𝑠𝑡𝑒𝑝 ←Interpolation(𝝃𝑠𝑡𝑒𝑝); if

IsCF(𝝓𝑠𝑡𝑒𝑝, 𝑰𝑜𝑏𝑠) then
16 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 ← 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 ∪ 𝝓𝑠𝑡𝑒𝑝 ;
17 else
18 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 ← 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 ∪ SWOA(

[

𝝓𝑖,𝝓𝑗
]

, 𝑰𝑜𝑏𝑠);

19 𝑖 ← 𝑗;
0 Return 𝝓𝑟𝑒𝑝𝑙𝑎𝑛

Algorithm 1 shows the overall architecture of our proposed online
trajectory planning algorithm for HRC. First, the planner obtains the
environment encoding information 𝐼𝑜𝑏𝑠 of the workspace in the current
state, the robot starting configuration 𝑐0 and the target configuration 𝑐𝑡.
The key obstacle avoidance waypoint 𝜉 of the C-space is calculated by
the CWP-net proposed in Section 3.2. Then, the interpolation algorithm
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is used to obtain the continuous motion trajectory 𝝓 of each joint. Next,
this motion trajectory is determined whether it satisfies the collision-
free requirement. If it satisfies, the robot performs the task according
to this trajectory. And if it does not satisfy, the initial trajectory is
discretized into sampling path points according to the path length.

By iteration, it is judged whether each pair of adjacent sampled path
points belongs to the collision-free region or not. The path points in the
collision-free interval are retained as part of the replanned trajectory.
For the interval where there is collision, first judge whether the target
configuration of this interval is located in the collision-free region,
and if it is not satisfied, search for the subsequent adjacent collision-
free configuration sampling points as the target configuration of the
interval.

CWP-net is used again for the replanned interval. However, in
some cases, if the neural network cannot find a path that satisfies the
obstacle avoidance requirement, the Stochastic waypoint optimization
algorithm (SWOA) proposed in Section 4.2 is used for the local op-
timization of the path in this interval. The above process is repeated
in each execution step until the robot reaches the target configuration
specified by the task.

To elaborate more specifically, the online trajectory planning algo-
rithm proposed in this paper is implemented by the following methods.

(1) CWPnet : CWPnet(∙) inputs the starting configuration label, the
target configuration label and the obstacle encoding information, and
outputs the conformation labels of the discrete obstacle avoidance path
points. The output labels need to be decoded to the configurations in
C-space. If there are adjacent discrete waypoints with the same label,
only the first of them is kept. In order to achieve continuous motion
of the robot, the motion intervals between each discrete waypoint also
needs to be specified as a series of intermediate waypoints and made
to satisfy the motion constraints.

(2) Interpolation: Interpolation(∙) inputs discrete waypoints and uses
a technique to outputs continuous and smooth motion trajectories for
each joint based on Quintic B-splines. Quintic B-splines of degree 𝑘 and
order ℎ = 𝑘 + 1 are linear combinations of polynomials 𝐵𝑖,𝑘 (𝑢) and
weighting coefficients 𝑄𝑖. 𝐵𝑖,𝑘 (𝑢) are generally referred to as the basis
functions and 𝑄𝑖 are referred to as the control points. 𝑢 (0 ≤ 𝑢 ≤ 1) is
the B-spline normalized trajectory parameter, where it represents the
time variable of the trajectory equation. Thus, the basic form of the
B-spline 𝑃 (𝑢) is as follows.

𝑃 (𝑢) =
𝑛
∑

𝑖=1
𝑄𝑖𝐵𝑖,𝑘 (𝑢) (6)

where 𝑛 denotes the number of control points. 𝐵𝑖,𝑘 (𝑢) satisfies the de
Boor–Cox formula [30].

𝐵𝑖,𝑘 (𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖
𝐵𝑖,𝑘−1 (𝑢) +

𝑢𝑖+𝑘+1 − 𝑢
𝑢𝑖+𝑘+1 − 𝑢𝑖+1

𝐵𝑖+1,𝑘−1 (𝑢)

𝐵𝑖,0 (𝑢) =
{

1 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

(7)

where 𝑢𝑖 (𝑖 = 1, 2,… , 𝑛 + 𝑘 + 1) is the sequence of nodes. According to
the number 𝑣 of via-waypoints, 𝑣 + 12 nodes are needed to achieve
interpolation.

The input sequence of angle-time discrete waypoints is 𝑐𝑗0, 𝑐
𝑗
1,… ,

𝑐𝑗𝑣+1
(

𝑗 = 1, 2,… , 𝑛𝑗
)

. where 𝑗 denotes the 𝑗𝑡ℎ joint, determined by
the number of joints to be smoothed 𝑛𝑗 . The trajectory interpolation
problem for the 𝑗𝑡ℎ joint is defined as a planning problem satisfying
the following constraints.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝑃
(

𝑢0
)

|𝑡=0 = 𝜃0
𝑃̇
(

𝑢0
)

|𝑡=0 = 0
𝑃
(

𝑢0
)

|𝑡=0 = 0
𝑃
(

𝑢𝑣+1
)

|𝑡=𝑓 = 𝜃0
𝑃̇
(

𝑢𝑣+1
)

|𝑡=𝑓 = 0

𝑃
(

𝑢𝑣+1
)

|𝑡=𝑓 = 0

𝑃
(

𝑢
)

= 𝜃 , (𝑘 = 1, 2,… , 𝑣)

(8)
6

⎩

𝑘 𝑘
Fig. 5. Minimum distance calculation for collision detection.

where 𝑃̇ (𝑢0)|𝑡=0 and 𝑃 (𝑢0)|𝑡=0 are the velocity and acceleration con-
straints at the starting waypoint. 𝑃̇ (𝑢𝑣+1)|𝑡=𝑓 and 𝑃 (𝑢𝑣+1)|𝑡=𝑓 are the ve-
locity and acceleration constraints at the ending waypoint. 𝑃 (𝑢𝑘) = 𝜃𝑘,
(𝑘 = 0, 1,… , 𝑣+1) constrains the curve through each waypoint. For the
planning problem with action execution time 𝑓 , a mature and efficient
solver [31] is used. The collocation matrix is calculated adaptively
based on the number of waypoints and constraints, and then the
designed linear system is solved using QR factorization.

(3) IsCF : is an abbreviation for IsCollisionFree(∙). This function
inputs the continuous trajectory planned in the previous steps and
outputs the result whether the trajectory meets a collision or not. The
input trajectory is first discrete sampled into small steps, and then a line
segment-based distance measurement algorithm is used to verify that
each discrete configuration is in collision-free space. As shown in Fig. 5,
the robot links and the human arm are abstracted into two spatial
line segments ⃖⃖⃖⃖⃖⃗𝑨𝑩 and ⃖⃖⃖⃖⃖⃖⃗𝑪𝑫, and the function goal is the minimum
distance |𝐸𝐹 | between them. By adding auxiliary lines, the vertical
line of ⃖⃖⃖⃖⃖⃖⃗𝑪𝑫 is drawn from point 𝐴, and the vertical foot is the point
𝐻1. Similarly, the vertical line of ⃖⃖⃖⃖⃖⃗𝑨𝑩 is made with 𝐻1 as the initial
point and the foot point is 𝐻2. Repeat the process and the minimum
distance |𝐸𝐹 | = |

|

𝐻𝑛𝐻𝑛+1
|

|

< ⋯ < |

|

𝐻2𝐻3
|

|

< |

|

𝐻1𝐻2
|

|

, ( 𝑛 ⊂ 𝑁∗) will
be obtained by iteration. The spatial relations and theoretical proofs of
the line segments are given in the literature [32]. With this method, it
is possible to efficiently obtain the distance between the robot’s three
moving links and the human arm, and subsequently control the radius
and safety threshold of the cylindrical envelopes of both.

4.2. An improved STOMP for optimization

The STOMP algorithm [8] is a method for motion planning using
random trajectories, which explores the space around the initial trajec-
tory by generating noise path points to find a lower-cost trajectory. This
method does not require gradient information, and its stochastic nature
is beneficial to overcome local minima. However, STOMP also has some
limitations, such as the need for an ideal initial trajectory and the lack
of direction of the stochastic exploration process. For each path point,
the covariance matrix of the generated noise distribution is the same,
leading to a consistent exploration range. This existence of redundant
exploration areas introduces bias and affects the planning speed and
results.

Considering the above limitations of the original algorithm, an
improved STOMP algorithm, called Stochastic waypoint optimization
algorithm (SWOA(∙) in Algorithm 1), is proposed in this paper for
optimizing the undesirable parts of the initial trajectory. The specific
implementation process of this algorithm is as follows.

The proposed improved STOMP algorithm is used to optimize the
input joint trajectory, which has a starting configuration of 𝝓𝑖 and an
ending configuration of 𝝓 . The trajectory is sampled in equal steps
𝑗
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Algorithm 2: Stochastic waypoint optimization algorithm
input : ◦

[

𝝓𝑖,𝝓𝑗
]

– Initial joint trajectory that starts with 𝝓𝑖
and ends with 𝝓𝑗 ;
◦ 𝑰𝑜𝑏𝑠 – Obstacle Information;

output: ◦ 𝝓𝑟𝑒𝑝𝑙𝑎𝑛 – Collision-free trajectory;
given : ◦ 𝜴 – A positive semi-definite matrix representing

control costs;
◦ 𝑺 – A smooth matrix;
◦ 𝝁𝑘𝑚 ,𝜮𝑘𝑚 – From DPGMM

(

𝝍𝑚
)

,
𝑘𝑚 = 1, 2,⋯ , 𝑁𝑘𝑚 , 𝑚 = 1, 2, 3.

1 {𝝓1,𝝓2,⋯ ,𝝓𝑁𝑠
} ←Sample(𝝓𝑖,𝝓𝑗);

2 𝜽𝛾 = {𝜃𝛾,1, 𝜃𝛾,2,⋯ , 𝜃𝛾,𝑁𝑠
} ←Extract the angle sequence of joint 𝛾 ;

3 𝒌𝑚 = {𝜅1, 𝜅2,⋯ , 𝜅𝑁𝑠
} ←Search for the sub-model tag vector of 𝜽𝛾 ;

4 Repeat until convergence of 𝐶𝑡𝑜𝑡𝑎𝑙 (𝜽)
5 for 𝛼 ← 0 to 𝑁𝑠 do
6 {𝜺1𝛾,𝛼 , 𝜺

2
𝛾,𝛼 ,⋯ , 𝜺𝑀𝛾,𝛼} ←  (𝝁𝜅𝛼 ,𝜮𝜅𝛼 ) ;

7 for 𝛽 ← 0 to 𝑀 do
8 𝑃

(

𝜺𝛽
)

←
𝑒𝑥𝑝

[

−𝐶
(

𝜺𝛽
)

∕𝜆
]

∑𝑀
𝑝=1 𝑒𝑥𝑝[−𝐶(𝜺𝑝)∕𝜆]

;

9 for 𝛼 ← 1 to 𝑁𝑠 − 1 do
10 𝛿𝜺𝛼 ←

∑𝑀
𝑝=1 𝑃 (𝜺

𝑝
𝛼)𝛿(𝜺

𝑝
𝛼 − 𝝁𝜔𝜅𝛼 ) ;

1 𝜽← 𝝁𝜔𝜅𝛼 + 𝑺𝛿𝜺 ;
2 𝐶𝑡𝑜𝑡𝑎𝑙 (𝜽) ←

∑𝑁𝑠
𝛼=1 𝑐(𝜽𝛼) +

1
2𝜽

𝑇𝜴𝜽 ;
3 for 𝛼 ← 0 to 𝑁𝑠 do
14 [𝑹,𝜞 ] ← EVD(𝜮𝜅𝛼);
15 (𝑎𝛼 , 𝑏𝛼) ← 2

√

2(
√

𝜞 2,2 ,
√

𝜞 1,1) ;
16 (𝑥0, 𝑦0) ← 𝑹𝑇 𝜽𝛼 −𝑹𝑇𝝁𝜅𝛼 ;
17 (𝑎∗𝛼 , 𝑏

∗
𝛼) ←Update(𝑥0, 𝑦0, 𝑎𝛼 , 𝑏𝛼);

18 𝝁𝜅𝛼 ← 𝜽𝛼 ;
19 𝜮𝜅𝛼 ← 𝑹

[

𝑏∗2𝛼 ∕8, 0; 0, 𝑎∗2𝛼 ∕8
]

𝑹𝑇 ;

0 Return 𝝓𝑟𝑒𝑝𝑙𝑎𝑛;

using Sample(∙) to obtain a sequence of discrete waypoint configu-
rations {𝜙1, 𝜙2,… , 𝜙𝑁𝑠

}. At this point, the sequence of path points
orresponding to the joint 𝛾 is 𝜽𝛾 = {𝜃𝛾,1, 𝜃𝛾,2,… , 𝜃𝛾,𝑁𝑠

}. According
to the DPGMM distribution model in Section 3.1, the sequence of
submodel labels 𝒌𝑚 = {𝜅1, 𝜅2,… , 𝜅𝑁𝑠

} to which the sequence of path
oints belongs is obtained. The labels of joints 1 and 2 are based
n 𝛬1

𝑘1
, (𝑘1 = 1, 2,… , 𝑁𝑘1 ), the labels of joints 3 and 4 are based on

2
𝑘2
, (𝑘2 = 1, 2,… , 𝑁𝑘2 ), and the labels of joints 5 and 6 are based on

3
𝑘3
, (𝑘3 = 1, 2,… , 𝑁𝑘3 ). In the iteration of Algorithm 2, 𝑀 noise trajec-

ories {𝜺1𝛾,𝛼 , 𝜺2𝛾,𝛼 ,… , 𝜺𝑀𝛾,𝛼} are generated from  (𝝁𝜅𝛼 ,𝜮𝜅𝛼 ) depending on
the labels of each path point.

In the 8th line of Algorithm 2, the probability 𝑃
(

𝜺𝛽
)

[8] is given
for calculating each noise trajectory for each waypoint, where the
exponential term is calculated as

𝑒𝑥𝑝
[

−𝐶
(

𝜺𝛽
)

∕𝜆
]

= 𝑒𝑥𝑝

{

−𝜌
[

𝐶
(

𝜺𝛽
)

− min𝐶
(

𝜺𝛽
)]

max𝐶
(

𝜺𝛽
)

− min𝐶
(

𝜺𝛽
)

}

(9)

here 𝐶(𝜺𝛽 ) is the path cost function, 𝜆 is the adaptively adjusted cost
ensitivity parameter, and 𝜌 is an artificially set constant.

In the 10th line, the probability weighted sum of noise parameters
s calculated to update each joint motion of discrete waypoints in the
1th line. The updated path cost 𝐶𝑡𝑜𝑡𝑎𝑙 (𝜽) is calculated from line 12.

(

𝜽𝛼
)

=
𝛼
∑

𝑡=0
𝐶𝑜𝑏𝑠 + 𝐶𝑙𝑒𝑛 + 𝐶𝑐𝑜𝑛 (10)

here 𝐶𝑜𝑏𝑠 =
∑

𝑙∈
[

‖

‖

𝑥̇𝑙‖‖max
(

𝜀 + 𝑟𝑙 − 𝑑
(

𝑥𝑙
)

, 0
)]

denotes the obstacle
ost. The robot link is 𝑙 ∈  and 𝑑 ∙ is the signed Euclidean distance
7

( )
ransform (EDT) [8] based on the discrete workspace of Section 2. 𝜀
is the minimum safe distance, 𝑟𝑙 is the radius of the link cylindrical
envelope. 𝑥𝑙 is the link’s position and 𝑥̇𝑙 is its velocity of motion. 𝐶𝑙𝑒𝑛
denotes the path length cost, which is approximated as the sum of
the Euclidean distances between each adjacent path point of the end-
effector. 𝐶𝑐𝑜𝑛 denotes the constraint cost, which can be satisfied by
adding a degree to the cost function, describing the distance to the
constraint boundary for joint angle restrictions, speed restrictions and
end-effector orientation constraints, etc.

It is worth noting that in this paper the noise path points gener-
ated by  (𝝁𝜅𝛼 ,𝜮𝜅𝛼 ) are constrained to the path distribution model
in Section 3.1, which has parameters learned from sample data that
satisfy the joint constraints. Therefore, the path exploration within the
noise feasible range does not exceed the joint constraints. The velocity
can also be constrained by controlling the time step and the discrete
path trajectory step. Furthermore, 𝜽𝑇𝜴𝜽 in line 12 denotes the path
acceleration squared term, where 𝛺 is a positive semi-definite matrix
representing control costs, computed from 𝜴 = 𝑨𝑇𝑨. The smoothing
matrix 𝑺 takes the value 𝑹−1. 𝑨 is a finite difference matrix [8] as
follow.

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
−2 1 0
1 −2 1

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
1 −2 1
0 1 −2
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Lines 13 to 19 are the optimal exploration region update pro-
cess. For each path point, the eigenvalue decomposition 𝐸𝑉 𝐷(𝜮𝜅𝛼 )
is performed for the distribution sub-model parameter 𝜮𝜅𝛼 to which
it belongs. The decomposition yields 𝜮𝜅𝛼 = 𝑹𝜞𝑹𝑇 , where 𝜞 is the
eigenvalue matrix from which the noise path exploration range can
be calculated by line 15. The boundary of this range takes the form
of an ellipse with semi-long axis 𝑎𝛼 and semi-short axis 𝑏𝛼 . 𝑹 is the
unit orthogonal matrix, which represents the rotation matrix of the
boundary ellipse with respect to the basic coordinate system. The
coordinates of the boundary ellipse center in the original exploration
range coordinate system are obtained from line 16.

In order to optimize the exploration range after each iteration
step, this paper proposes an iterative method 𝑈𝑝𝑑𝑎𝑡𝑒 (∙) for quickly
solving the elliptic boundary parameters 𝑎∗𝛼 , 𝑏

∗
𝛼 required for the next

teration in line 17. As shown in Fig. 6, the method is able to solve the
roblem expressed as the known parameters of the boundary ellipse 𝐸1

(center coordinate (𝑥01, 𝑦
0
1), semi-long axis length 𝑎1, and semi-short axis

ength 𝑏1) and the center coordinate (𝑥02, 𝑦
0
2) of the updated inscribed

llipse 𝐸2, solving for the semi-long axis length 𝑎2 and semi-short axis
ength 𝑏2 of the boundary ellipse 𝐸2. The updated boundary ellipse is
pecified as a similar ellipse to the original boundary ellipse, so that the
nterior tangent point 𝑃𝑡(𝑥𝑡, 𝑦𝑡) satisfies the condition: ‖𝑥𝑡 − 𝑥02‖∕𝑎2 =
𝑥𝑡 − 𝑥01‖∕𝑎1.

Taking Fig. 6(b) as an example, the position of the tangent point
s found in the interval [−𝑠𝑞𝑟𝑡(𝑎22[1 − (𝑦02)

2∕𝑏22]), 𝑥
0
2]. First, the interval

s discretized in equal steps as [𝑥0, 𝑥1,⋯ , 𝑥𝑁 ], and the 𝐸2 parameter is
olved in turn according to the inner tangent scaling relation when the
oordinates of the tangent point are assumed to be 𝑥𝑝 = 𝑥1,… , 𝑥𝑁−1.
hen, the 𝐸2 coordinates 𝑃𝑙(𝑥𝑝−1, 𝑦𝑝−1) and 𝑃𝑟(𝑥𝑝+1, 𝑦𝑝+1) corresponding
o the neighboring points 𝑥𝑝−1 and 𝑥𝑝+1 of the point 𝑥𝑝 are obtained.
ubstituting the two points 𝑃𝑙 and 𝑃𝑟 into 𝐸1, 𝜖𝑝−1 = 𝑥2𝑝−1∕𝑎

2
1 + 𝑦2𝑝−1∕𝑏

2
1

nd 𝜖𝑝+1 = 𝑥2𝑝+1∕𝑎
2
1+𝑦

2
𝑝+1∕𝑏

2
1 are calculated. From Fig. 6(c), 𝜖𝑝−1 and 𝜖𝑝+1

re both smaller than 1 when 𝑥𝑝 is a tangent point. In Fig. 6(d), when 𝑥𝑝
s not a tangent point, one of 𝜖𝑝−1 and 𝜖𝑝+1 is larger than 1 and the other
s smaller than 1. Note that our method is an approximate method, and
he parameters of the inner tangent ellipse obtained are related to the
umber of samples 𝑁 in the interval. There exists the case shown in
ig. 6(e), where there exist two intersections of ellipse 𝐸 and ellipse
1
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Fig. 6. Noise exploration boundary ellipse update rule schematic. (a) The DPGMM distribution sub-model constraint range. (b) Simplified model of the boundary ellipse update
rule. (c) The state of tangency. (d) The state of intersection. (e) Special state due to discrete accuracy.
Fig. 7. Flow chart of the proposed safety trajectory generation algorithm.

𝐸2 in discrete steps, satisfying the condition that both 𝜖𝑝−1 and 𝜖𝑝+1
are less than 1 at the same time. Therefore, the derived approximate
inner tangent ellipse parameters are a combination of accuracy and
computational efficiency. In this paper, the number of discretization
is selected as 100, the computation time is less than 1 ms, and the
computation efficiency is higher than that of the analytical solution
method for solving the system of parametric equations, which can meet
the demand of real-time computation.

Based on the above solution process, 𝝁𝜅𝛼 and 𝜮𝜅𝛼 for the next
iteration step is updated by lines 17 and 18. Algorithm 2 iterates
8

until the total cost of the path 𝐶𝑡𝑜𝑡𝑎𝑙(𝜽) converges. To summarize, the
proposed dynamic trajectory planning process is shown in Fig. 7.

5. Experiments and result analysis

In this section, the effectiveness of the proposed online collision-free
trajectory generation algorithm is demonstrated by simulations and real
experiments. The dynamic process of HRC is simulated based on a real
industrial case. The results of the experiments verify that the algorithm
has the ability to actively avoid collision with the human in the shared
workspace in both static and dynamic situations.

5.1. An industrial use case

We validate the approach proposed in this paper with an indus-
trial use case of HRC applied in the field of aircraft final assembly
testing. The working environment is an aircraft cockpit. During the
collaborative process, the human operator seats in the captain pilot
seat of the aircraft cockpit and the collaborative robot is located in
the co-pilot area. The collaborative task is to operate the switches,
buttons, and manipulation mechanisms (including the driver’s wheel,
driver’s column, and footrest) in the relevant area according to the
test procedure, and cooperate to complete the test task. The schematic
diagram of our proposed test system is shown in Fig. 8.

In this use case, the discrete resolution 𝐷 is determined by Eq. (1)
based on the shared workspace dimensions and taken as 5. Thus,
the shared workspace is discretized into 5 × 5 × 5 voxels so that it
completely covers the space of possible interference with the operator
during motion. The robot can perform collaborative operations in this
space in known areas such as the central control panel, the display con-
trol screen and the top control panel. The typical HRC configurations
in this case are shown in Fig. 9.
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Fig. 8. An industrial use case of collaborative robot-assisted execution solution for
airborne system testing.

5.2. Collaborative simulation

In this section, simulations are designed to evaluate the proposed
algorithm and compare its performance with the state-of-the-art classi-
cal planners. The HRC task considered in the study is a robot-assisted
test system in the cockpit of an aircraft.

5.2.1. Implementation details
The test control platform for simulation is a desktop computer

configured with Intel Core i7-8700 processor at 3.20 GHz. Our system
uses a KUKA LBR iiwa 14 robot to perform in-cabin manipulation tasks
with a human operator. For different task and obstacle environment
configurations, the robot motion trajectories generated by the classical
planner and the motion trajectories from historical tasks are used as
empirical trajectories in the simulations, and a total of 1209 sample
data are finally identified. Empirical distribution learning is performed
on these sample data, and the DPGMM models of the three robot links
are obtained according to the method described in Section 3.1. A total
of 22 submodels 𝛬1

𝑘1
, (𝑘1 = 1, 2,… , 22) are generated for the distribution

model of Link 1, 19 submodels 𝛬2
𝑘2
, (𝑘2 = 1, 2,… , 19) are generated

for the distribution model of Link 2, and 21 submodels 𝛬3
𝑘3
, (𝑘3 =

1, 2,… , 21) are generated for the distribution model of Link 3. The
distribution of DPGMM sub-models for each link is shown in Fig. 10.
Based on this distribution model, the normalized configuration labels
of the sample path points are constructed by the methods in Section 3.

The designed CWP-net is implemented with keras [33], which uses
a fully connected network structure with four hidden layers, where
the number of neurons in each layer is (127, 85, 57, 37, 23, 10),
with the ReLU activation functions and dropout layers with dropout
rate p = 0.3 except the last layer. In the training process, we use
the Adam optimizer with learning rate 𝜆 = 0.001 to optimize the
weight parameters, and set the batch size to 64. In addition, we use
the data augmentation technique to enlarge our training set for better
generalization and robustness. That is, we randomly adjust the obstacle
pose of the original sample path to generate new obstacles that match
the collision-free path near by original voxels. Finally, total of 6045
training trajectories are obtained. In Appendix B, we elaborate the
source of the training data and the data augmentation techniques.
The network hyperparameter selection process, the uniformity of the
training data distribution and the generalization of the model are all
verified by K-fold cross-validation experiments in Appendix C. The loss
of the best test model converges after 112 epoches at loss = 0.02538
in 47.99s on a Nvidia Tesla V100S GPU.
9

Table 2
Initial task setup and collision-free intermediate configurations generated by the
proposed algorithm.

Joint

1 2 3 4 5 6

Static experiment 1

𝒄0 1.2113 0.8761 −0.0670 −1.6991 0.6956 −0.8617
𝒄1 1.3499 0.8159 0.1203 −1.5880 0.7562 −0.8682
𝒄2 1.4245 0.3546 0.1203 −1.5880 0.7562 −0.8682
𝒄3 1.4245 0.3546 0.6775 −1.6534 0.7562 −0.8682
𝒄𝑡 1.8884 0.4479 0.2962 −2.0297 0.7582 −0.8601

Static experiment 2

𝒄0 2.3972 0.9928 0.2963 −1.3596 1.2952 −0.0835
𝒄1 1.6895 0.9701 0.2847 −1.2307 1.0320 −0.0503
𝒄𝑡 1.3503 0.8371 0.2468 −1.9875 1.2945 −1.6858

Static experiment 3

𝒄0 1.2987 0.8547 0.2413 −1.6388 0.6793 −1.1404
𝒄1 1.3499 0.8159 0.2167 −1.2660 0.8346 −1.5343
𝒄2 1.3499 0.8159 1.3641 −1.8566 0.8346 −1.5343
𝒄𝑡 1.4920 1.1075 0.9255 −1.6115 0.3877 −1.3558

5.2.2. Static simulation without human motion
In this part, we simulate three static configurations common to

the collaborative process. Using the proposed algorithm, trajectories
are automatically generated in which the robot can accomplish the
task goal while avoiding the arms of its human colleagues. Besides,
the position, velocity, and acceleration profiles in the joint space of
each trajectory are demonstrated. Since our goal is to plan obstacle
avoidance trajectories and the robot’s seventh axis angle does not affect
the robot’s obstacle avoidance pose, the evaluated obstacle avoidance
configuration consists of angles from 1 to 6 joints.

Fig. 11 shows the task configuration and simulation results for
static experiment 1. The starting configuration 𝒄0 and the ending
configuration 𝒄𝑡 for this task are shown in the static experiment 1 of
Table 2. A randomly generated envelope cylinder simulating a human
arm operating the central control panel is used to represent the obsta-
cle. To avoid collisions during robot motion, the proposed algorithm
automatically generates three intermediate configurations 𝒄1, 𝒄2 and
𝒄3, listed in Table 2. To show the obstacle avoidance process more
clearly, the start, end and intermediate path point configurations of
the planned trajectory are given in Fig. 11(a), and the end-effector
motion trajectory is shown in a green line. The discrete configuration
of the entire trajectory is shown in Fig. 11(b), which clearly shows that
the proposed method can guarantee the distance between the robot
body and the obstacles during the whole motion. Similarly, Fig. 12
shows the setting and results of static experiment 2. To avoid collisions,
the algorithm automatically generates an intermediate configuration
𝒄1. The specific parameters are shown in the static experiment 2 part
of Table 2. The result of another statics experiment 3 is shown in
Fig. 13. In this obstacle and task condition, the algorithm generates
two intermediate configurations. The configuration data are shown in
the experiment 3 part of Table 2.

From the above three static simulations, it can be seen that the
proposed algorithm can effectively and automatically generate the path
points required for obstacle avoidance for the environmental configu-
ration of HRC in the cockpit, and plan the trajectory of the executable
task without interfering with the human task. The trajectory generated
by the algorithm not only ensures that the robot end-effector does not
cause a collision, but also takes into account that each link of the robot
body does not collide with the obstacles. At the same time, the method
in this paper achieves the goal of trajectory planning in the joint space.
The generated trajectories are continuous and smooth in both velocity
and acceleration levels. The starting point, ending point and motion
process of the trajectory satisfy the velocity and acceleration constraints
specified by the task.
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Fig. 9. Examples of human forms in the discrete shared workspace. (The red dots represent the subspaces occupied by the human arm as an obstacle. The gray dots represent
the free subspaces in which the robot can plan movements). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 10. Waypoint distribution models of robot sample obstacle avoidance trajectories using DPGMM. (a) Distribution sub-model of Link 1. (b) Distribution sub-model of Link 2.
(c) Distribution sub-model of Link 3.
It is worth noting that the proposed CWP-net planned collision-free
path points are trained based on the DPGMM distribution sub-model.
To a certain extent, the planned trajectories lose a part of the accuracy
of the sample trajectories, and there exists a risk of collision with
obstacles in the trajectories generated by the network model. Therefore,
we propose an improved STOMP-based SWOA optimization method in
Section 4.2 for replanning when the neural network planning fails or
the trajectory is unsatisfactory. Fig. 14(a) shows the obstacle avoidance
trajectory generated directly by CWP-net in one experiment, and it can
be seen that the three generated intermediate path points have one
path point with large deviation. Thus, the SWOA algorithm is used to
optimize this part in the path segment where the collision is occurred.
The replanned outcome is shown in Fig. 14(b), and it can be seen
that the replanned trajectory can fully satisfy the obstacle avoidance
demand. Overall, the combination of CWPnet+SWOA is a compromise
consideration of computational efficiency and trajectory quality, which
10
can effectively make the online trajectory planner balance planning
efficiency and collision avoidance robustness.

5.2.3. Algorithm efficiency comparison
In this part, we present the results of the planning time evaluation

of the proposed algorithm with the state-of-the-art classical planners:
the RRT-connect, RRT* and STOMP. We use the standard Open Motion
Planning Library (OMPL) [34] to implement the classical planners.
The experimental environment is built by MoveIt [35], as shown in
Fig. 15. The robot workspace is surrounded by fixed obstacles such as
simulated cockpit wall board, overhead control panel, central control
panel, display control screen, and driving pillar. Cylinders are used to
simulate the envelope of the human arm and different postures are
constructed randomly. 30 simulated task scenarios different from the
training data are created, and the task objectives of this experiment
refer to the actual operational requirements. In Fig. 16, we report the
test data for these 30 experiments. In all planning problems:



Robotics and Computer-Integrated Manufacturing 80 (2023) 102475Y. Wang et al.
Fig. 11. Static obstacle avoidance simulation configuration 1. (a) The critical waypoint configuration and end-effector motion trajectory generated by the proposed algorithm. (b)
Schematic of the discrete sampling trajectory during the motion. (c) Joint angle, velocity and acceleration of the obstacle avoidance trajectory.
Fig. 12. Static obstacle avoidance simulation configuration 2. (a) The critical waypoint configuration and end-effector motion trajectory generated by the proposed algorithm. (b)
Schematic of the discrete sampling trajectory during the motion. (c) Joint angle, velocity and acceleration of the obstacle avoidance trajectory.
∙ The average computation time of RRT-connect is 1.1176 s with a
standard deviation of 0.1244 s.

∙ The average computation time of RRT* is 4.3410 s with a standard
deviation of 1.3903 s.

∙ The average computation time of STOMP is 1.4901 s with a
standard deviation of 0.4296 s.
11
And according to the process of our proposed Algorithm 1, the
trajectories directly planned by CWP-net are feasible for 16 (53%) in
the total experiments. This part of the results is not optimized by the
SWOA algorithm, and the average planning time is 0.0094 s with a
standard deviation of 0.00028 s. In contrast, there are 14 (47%) paths
planned by CWP-net that are optimized by SWOA, and the average
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Fig. 13. Static obstacle avoidance simulation configuration 3. (a) The critical waypoint configuration and end-effector motion trajectory generated by the proposed algorithm. (b)
Schematic of the discrete sampling trajectory during the motion. (c) Joint angle, velocity and acceleration of the obstacle avoidance trajectory.
Fig. 14. Example of the proposed SWOA trajectory optimization. (a) Trajectory planned
by CWP-net. (b) Trajectory output after SWOA replanning.

planning time for this part is 0.5877 s with a standard deviation of
0.1621 s. The overall average time for the two parts is 0.2793 s.
12
Fig. 15. Simulation environment for algorithm comparison experiments.

From the results, it can be analyzed that the proposed algorithm is
4.0 times and 15.5 times faster than RRT-connect and RRT*, respec-
tively. Also the improved STOMP combined with CWP-net algorithm is
at least 2.5 times faster than the original STOMP algorithm. Also, in the
simulation, the average number of iterations for STOMP to converge
to the path requirement is 43.6, while with the improved SWOA
algorithm, the average number of experimental iterations is 29.3. The
improved algorithm converges significantly faster to the feasible range,
proving the effectiveness. Increasing the training samples with full
consideration of the environmental configuration can somewhat reduce
the number of tasks requiring SWOA optimization and increase the
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Fig. 16. Comparison of experimental results. (a) Planning time of each algorithm for
log-scale with different simulation configurations. (b) Distribution of test results.

percentage of CWP-net direct output, which can better improve the
average planning efficiency of the algorithm.

The computation time of traditional planners is difficult to meet
dynamic planning, and with algorithms such as RRT*, the planning
time will increase significantly as the target path cost decreases. For
CWP-net, the training process is able to adopt the trajectories planned
by any advanced planners with the desired path cost. The computation
time of the model stably stays around 10 ms, which is able to meet
the demand of dynamic obstacle avoidance. This approach constructs
a bridge between an offline planner and an online planning task with
some generalizability.

5.2.4. Dynamic simulation with human motion
In this section, we give a simulation experiment under dynamic

human arm movements. Fig. 17 provides the simulation results of the
dynamic changes of the collaborator’s arm during HRC and the online
adaptive trajectory of the robot. Fig. 17(a) shows the robot motion
trajectory from the initial configuration to the target configuration
determined offline in the state of no obstacle interference. When the hu-
man arm moves, resulting in Fig. 17(b). The algorithm detects collision
interference in the robot trajectory and generates collision-free path
point configurations to avoid collisions. The replanned trajectory that
can reach the target configuration is shown in the green dashed part
in Fig. 17(c). The robot motion trajectory, after real-time correction,
moves according to the replanned trajectory as shown in Fig. 17(d). The
collaborator moves again and the arm space state changes, as shown in
13
Fig. 17(e). The algorithm replans the smooth and continuous obstacle
avoidance trajectory in the joint space online and executes it, as shown
in Fig. 17(f)–(h).

5.3. Real collaboration scenario testing

The real HRC test environment consists of a collaborative robot, a
vision measurement module, and a simulated cockpit. The simulated
cockpit consists of a force-sensitive driver’s wheel, joystick, footrest
and modules such as buttons, switches and displays, which are of equal
size to the real environment. The robot is a KUKA iiwa14 collaborative
robot, including the robot body, controller PC, smartpad and SCHUNK
Co-act EGP-C 40-N-N-KTOE gripper. The vision measurement module
consists of two Intel RealSense D435i RGB-D cameras, to obtain multi-
angle views in the workspace. An open source project MediaPipe [36]
is used to perform arm tracking and positioning. The overall control
module of the online trajectory planning algorithm and the vision
module are built on a separate server-side program on a PC to control
the robot-side controller in real time via TCP/IP protocol.

Fig. 18(a) shows task configuration 1 for the simulated cabin collab-
oration scenario, and the green line shows the default motion trajectory
of the robot in the undetected obstacle condition. The starting state is
located near the display control panel and the target state is located
at the outer end of the central control panel. The entire end-effector
motion path is parallel to the central axis of the cockpit. When the col-
laborator arm moves to the central control panel region for operation,
as in Fig. 18(b), the algorithm generates path points online to replan the
trajectory in order to avoid collisions. The robot moves above the arm
and then crosses the arm to finally reach the target position according
to the replanned path, and the process is shown in Fig. 18(c) and
(d). Figure e gives another task configuration 2 for the collaborative
scenario. The collaborator arm is located at the height of the speed
brake handles to simulate the process of operating the handles, and
the default trajectory and replanned trajectory of the robot from the
starting position at the display control panel to the end of the central
control panel are shown in Fig. 18(e). Fig. 18(f) shows the collaborative
scenario task configuration 3. The robot starting state is located at the
end of the central control panel, and the target state is the top control
panel area. During the robot’s movement along the default motion path,
the collaborator arm moves to the top control panel area for operation.
After the system detects that the arm interferes with the initial path,
it generates a collision-free configurations as in Fig. 18(g) and (h). The
robot bypasses the collaborator arm to reach the target location without
interfering with the work of the collaborator, as shown in Fig. 18(i).

The above process tested a typical configurations of the collabora-
tion process. The system’s autonomously replanned obstacle avoidance
trajectories are shown in Fig. 19. The test results demonstrate the
ability of the proposed algorithm to avoid human–robot collisions in
collaborative aircraft assembly testing or similar collaborative shared
workspace production activities.

6. Conclusions

In this paper, a new collaborative human–robot safety trajectory
generation method is proposed for industrial applications with shared
workspaces. The proposed robot collision avoidance trajectory planning
algorithm is applicable to dynamic environments. The algorithm con-
sists of two parts. In the first part, we first design the Collaborative
waypoint planning network (CWP-net) for trajectory planning in robot
joint space. CWP-net is able to learn the DPGMM distribution infor-
mation of sample paths. Using the starting configuration, the target
configuration and the environmental obstacle information as inputs,
all the obstacle avoidance waypoints in the joint space are output in a
single step. Compared with the widely studied single-step incremental
planning methods based on neural networks, CWP-net is able to plan
the whole motion trajectory synchronously based on a single output
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Fig. 17. Dynamic simulation with human motion.
based on velocity and acceleration constraints, and is able to combine
with other advanced optimization algorithms to control the path cost
and motion smoothness. In the second part of the algorithm, we pro-
pose an improved STOMP (SWOA) algorithm for locally optimizing the
generated trajectories of CWP-net. The method is based on the param-
eters of the DPGMM distribution model established in the first part,
which constrains the random noise generation range and the trajectory
14
optimization direction. While ensuring the optimization quality, it fur-
ther enhances the planning efficiency. Simulations and real experiments
verify the feasibility of the online collision-free trajectory planning
algorithm proposed in this paper. Compared with the current state-of-
the-art trajectory planning algorithms, the proposed algorithm is 4.0
times and 15.5 times faster than RRT-connect and RRT*, respectively.
Also the improved STOMP combined with CWP-net algorithm is at least
2.5 times faster than the original STOMP algorithm. In summary, the
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Fig. 18. Real collaboration scenario testing with on-line safety trajectory generation.
proposed framework of our algorithm builds a bridge between offline
planners and online planning tasks, which can combine the results
of advanced planners that do not meet real-time requirements into
dynamic tasks of human–robot collaboration type.

The disadvantage of the method in this paper is that the collection
of training data is time-consuming. It requires historical data or a
classical planner to generate feasible trajectories offline. However, the
process only needs to be performed before industrial applications, and
15
no extra operations are required during the work. In addition, although
the CWP-net-based neural network planner has a good computational
efficiency of 10 ms, which is suitable for a general dynamic HRC
scenario. However, the STOMP-based trajectory optimization method
temporarily limits HRC with moderately restricted relative motion
velocities for application. Parallel versions of the program [15,16] will
be developed to utilize multi-core CPUs or multi-core GPUs for parallel
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Fig. 19. Trajectories generated from human arm obstacles in real collaborative experiments.
computation to improve the SWOA algorithm’s efficiency, making the
algorithm capable of more dynamic and variant situations.
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Appendix A. Empirical formula for workspace discretization

The arm envelope cylinders are located in the voxel-represented
workspace, occupying different voxels depending on the different voxel
resolution, envelope lengths, radius, safety distances, and occupation
rules. Therefore, we can only give a general applicable discrete res-
olution reference formula based on the specific conditions. However,
it is possible to regain the empirical formula applicable to the new
conditions by re-following the method described below when some
conditions change.

Since the position and pose of the arm cylindrical envelope in
the workspace are random, using the Monte Carlo method to obtain
the empirical formula is achievable. Still, it will turn out to be ex-
tremely costly. Therefore, we use the uniform sampling method to
sample the position and pose of the arm cylindrical envelope in the
workspace, while making the empirical formula as accurate as possible.
The detailed implementation process is as follows.

The arm enveloping cylinder has a radius of 0.06 m and a length
of 0.5 m. Initially, the cylinder’s main axis is parallel to the 𝑧-axis
in the workspace. The cylinder pose is controlled by rotating the
initial pose around the 𝑥-axis in the workspace by an angle 𝛼 and
then rotating it around the 𝑧-axis in the workspace by 𝛽, where 𝛼 ∈
{0, 12◦, 24◦,… , 348◦} and 𝛽 ∈ {0, 12◦, 24◦,… , 348◦}. The cylinder posi-
tion is obtained by translation along the x/y/z axis in the workspace,
and the translation step length is defined as 𝐷∕8𝐿, where the 𝐿 is
the workspace edge length and 𝐷 is the discrete resolution. The total
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Fig. A.1. Accuracy losses in the modeling of the arm cylindrical envelope with its
actual volume at different shared workspace sizes and discrete resolutions. (The blue
data points are the corresponding results obtained from the simulation. The colored
surface is obtained by interpolating all data points). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

number of homogeneous translations is 512. Therefore, for each given
𝐿 and 𝐷, 460800 workspace occupancy cases are calculated. The radius
increment on the true arm envelope is calculated based on the total
volume of the grids occupied by the discrete cylindrical envelope.
Finally, the average of all radius increments under this condition is
recorded as the incremental radius under the given 𝐿 and 𝐷. In our
simulation, 𝐿 is uniformly sampled in steps of 0.05 m for a total of
33 cases from 0.4 m to 2 m. The discrete resolution 𝐷 is uniformly set
from 3 to 12 for 10 resolutions. The results are obtained from the above
conditions, as shown in Fig. A.1.

Based on the simulation results, we fit the data with a polynomial
function 𝐷(𝑅𝑖, 𝐿) ∶ {𝑅𝑖, 𝐿} ∈ R × R → 𝐷 ∈ R, by the least absolute
residual method. The formula is shown in Eq. (1).

Appendix B. Techniques in data augmentation

Due to the extensive distribution of robot and human collaborator
arms in the shared workspace, we use a recursive strategy to gener-
ate the required samples of obstacle avoidance motion trajectories to
cover as much work task space as possible. According to the starting
configuration and target configuration set by the task requirements,
we first plan the long-distance initial collision-free path in the case of
random obstacle distribution. For the key obstacle avoidance waypoints
of each path generated in this round, the configurations which are
closer to the starting configuration are selected as the new starting
points of the collision-free paths planned to the original targets in the
new round. As a result, 1209 sample paths are generated and used to
build the DPGMM model that characterizes the historical path point
distribution information. These paths are able to cover the various
critical obstacle avoidance configurations needed to perform tasks in
a shared workspace, while these configurations can also serve as new
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starting points for replanning when the original path is infeasible for
new obstacles.

It is obvious that one collision-free path is not only suitable for
one specific obstacle pose, but is also feasible and optimal for some
other similar obstacles. Therefore, we propose some data augmentation
techniques on our previously obtained 1209 collision-free paths.

(1) The obstacle translates along the x/y/z axis in some range.
(2) The obstacle rotates along the x/y/z axis in some range.
(3) The obstacle voxel randomly jumps to one of its 26 neighbor

voxels.
After generating the augmented data, we filter the data that no

collision occurs between the path and the new obstacle configuration
and add them into the training dataset. By this method, we randomly
expand the original sample of 1209 paths to 6045 path and use them
to train the neural network.

Appendix C. Training and validation of the CWP-net

The traditional technique for training and testing models is to split
the data into two different splits, with a typical ratio of 7:3. However,
this approach brings problems that we need to manually tune the
hyperparameters to achieve a good performance. This static approach
leads to the risk of overfitting on the testing set. The evaluation metrics
do not reflect the model’s generalization performance.

We can further split data into training, validation, and testing sets
to solve the above problem. The model optimal hyperparameters are
obtained from the training and validation sets, and finally, the model
generalization performance is evaluated by the testing set. However,
this technique has two disadvantages. The first is that splitting the data
into three sets reduces the number of samples used to learn the model’s
weight parameters, which is very unfriendly for small training datasets,
as in our case. The second is that the testing set may not fully represent
the distribution of the whole data, leading to a non-optimal training
process.

To overcome the problems mentioned above, we use two times of
K-fold cross-validation technique to select the model hyperparameter
and evaluate the model performance in the training process. The detail
of the technique is shown below.

Step 1. Randomly split the whole dataset into 𝑘1 = 5 folds, namely,
{𝑆1, 𝑆2,… , 𝑆5}, where 𝑆5 is the testing set. This split is known as the
outer fold.

Step 2. Randomly split the remaining sets {𝑆1, 𝑆2,… , 𝑆4} into
𝑘2 = 10 folds, namely, {𝑠1, 𝑠2,… , 𝑠10}. This split is known as the inner
fold. Use 𝑠1 as the validation set and the rest merged as the training
set. Record the best MSE Loss of the validation set under the given
hyperparameter.

Step 3. Repeat step 2 for 𝑘2 = 10 times. For each time, use one
different fold in {𝑠1, 𝑠2,… , 𝑠10} as the validation set and the rest as
the training set. Calculate the mean and standard deviation as the
performance measurement for the current hyperparameter.

Step 4. For each different group of hyperparameters, repeat the step
2 and 3.

Step 5. Select the best hyperparameter by the mean and standard
deviation of each hyperparameter group.

Step 6. Use the best hyperparameter selected from step 5, train the
model on the combined dataset {𝑆1, 𝑆2,… , 𝑆4}, and test the perfor-
mance on the set 𝑆5.

Step 7. Repeat step 6, use 𝑠1, 𝑠2, 𝑠3, and 𝑠4 as the test set, respec-
tively. Then use the remaining sets for training the model. Select the
best among five models as the CWP-net in the real application.

The training process uses the Adam optimizer, with the recom-
mended hyperparameters weight decay of 0.0005, initial learning rate
from 0.001 to 0.01, and a dropout rate from 0.2 to 0.5. Consider
the polynomial computation complexity of K-fold cross-validation, we
search initial learning rate in 0.001, 0.004, 0.007, 0.01 and dropout
rate in 0.2, 0.3, 0.4, 0.5. Meanwhile, we search the batch size in 32, 64,
17
Fig. C.1. Inner K-fold cross-validation for hyperparameter group selection with 𝐾 = 10.

Fig. C.2. Outer K-fold cross-validation repeated experiments for optimal model
selection with 𝐾 = 5.

128, and 256. Finally, we get a total of 64 groups of hyperparameters
searching for the best hyperparameters. The result of the experiment is
shown in Fig. C.1.

Among all hyperparameter groups, we finally select the group of
learning rate = 0.001, batch size = 64, and dropout rate = 0.3.
Using this setting, we randomly re-split and repeat the outer fold cross
validation ten times and obtained the results on each test dataset in
Fig. C.2.

The results of the mean and standard deviation of the loss for each
five-fold test in ten replicate experiments are shown in Table C.1.
The best mean value is 0.0271, and the best standard deviation is
0.000361, corresponding to the 9th and 2nd group of experiments,
respectively. However, the larger standard deviation results on the 9th
group compared to the other groups indicate that this model suffers
from a certain degree of imbalance sample distribution. Also, the
generalization performance is not the best among all. We need to filter
out the models with good mean and standard deviation performance
and finally select 3rd group as the optimal model.

In addition, the results from this cross-validation experiments show
that the loss distribution values of the ten five-fold test results are
relatively uniform, so the average generalization error of the model on
this test set is low. It also shows that there is no overfitting caused
by the unreasonable division of the dataset during the model training,
which ensures the generalization of the model trained based on this
dataset.

At the same time, based on the fact that the overall test results were
evenly distributed, we find that the dataset we used for training and
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Table C.1
Results of repeated five-fold cross-validation tests with 10 random splits.

Test No. 1 2 3 4 5 6 7 8 9 10

Mean value (×10−2) 2.76 2.74 2.73 2.77 2.79 2.75 2.73 2.76 2.71 2.73
Standard deviation (×10−4) 9.39 3.61 3.81 6.39 7.00 6.12 7.12 3.86 8.11 5.01
testing did not have a large test discrepancy in the ten five-fold cross-
validations. The experiment shows our small dataset is well enough
to obtain reliable training results. Therefore, this experiment can also
demonstrate that the size and the distribution of the dataset for this task
are relatively reasonable and can guarantee the model’s generalization
performance.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rcim.2022.102475.
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